Activating Molybdenum Carbide Nanoparticle Catalysts under Mild Conditions Using Thermally Labile Ligands

© 2022 The Authors. Published by American Chemical Society.

Bibliographische Detailangaben
Veröffentlicht in:Chemistry of materials : a publication of the American Chemical Society. - 1998. - 34(2022), 19 vom: 11. Okt., Seite 8849-8857
1. Verfasser: Karadaghi, Lanja R (VerfasserIn)
Weitere Verfasser: To, Anh T, Habas, Susan E, Baddour, Frederick G, Ruddy, Daniel A, Brutchey, Richard L
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Chemistry of materials : a publication of the American Chemical Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM347631983
003 DE-627
005 20231226034305.0
007 cr uuu---uuuuu
008 231226s2022 xx |||||o 00| ||eng c
024 7 |a 10.1021/acs.chemmater.2c02148  |2 doi 
028 5 2 |a pubmed24n1158.xml 
035 |a (DE-627)NLM347631983 
035 |a (NLM)36248231 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Karadaghi, Lanja R  |e verfasserin  |4 aut 
245 1 0 |a Activating Molybdenum Carbide Nanoparticle Catalysts under Mild Conditions Using Thermally Labile Ligands 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 19.10.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2022 The Authors. Published by American Chemical Society. 
520 |a Transition-metal carbides are promising low-cost materials for various catalytic transformations due to their multifunctionality and noble-metal-like behavior. Nanostructuring transition-metal carbides offers advantages resulting from the large surface-area-to-volume ratios inherent in colloidal nanoparticle catalysts; however, a barrier for their utilization is removal of the long-chain aliphatic ligands on their surface to access active sites. Annealing procedures to remove these ligands require temperatures greater than the catalyst synthesis and catalytic reaction temperatures and may further result in coking or particle sintering that can reduce catalytic performance. One way to circumvent this problem is by replacing the long-chain aliphatic ligands with smaller ligands that can be easily removed through low-temperature thermolytic decomposition. Here, we present the exchange of native oleylamine ligands on colloidal α-MoC1-x nanoparticles for thermally labile tert-butylamine ligands. Analyses of the ligand exchange reaction by solution 1H NMR spectroscopy, FT-IR spectroscopy, and thermogravimetric analysis-mass spectrometry (TGA-MS) confirm the displacement of 60% of the native oleylamine ligands for the thermally labile tert-butylamine, which can be removed with a mild activation step at 250 °C. Catalytic site densities were determined by carbon monoxide (CO) chemisorption, demonstrating that the mild thermal treatment at 250 °C activates ca. 25% of the total binding sites, while the native oleylamine-terminated MoC1-x nanoparticles showed no available surface binding sites after this low-temperature treatment. The mild pretreatment at 250 °C also shows distinctly different initial activities and postinduction period selectivities in the CO2 hydrogenation reaction for the ligand exchanged MoC1-x nanoparticle catalysts and the as-prepared material 
650 4 |a Journal Article 
700 1 |a To, Anh T  |e verfasserin  |4 aut 
700 1 |a Habas, Susan E  |e verfasserin  |4 aut 
700 1 |a Baddour, Frederick G  |e verfasserin  |4 aut 
700 1 |a Ruddy, Daniel A  |e verfasserin  |4 aut 
700 1 |a Brutchey, Richard L  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Chemistry of materials : a publication of the American Chemical Society  |d 1998  |g 34(2022), 19 vom: 11. Okt., Seite 8849-8857  |w (DE-627)NLM098194763  |x 0897-4756  |7 nnns 
773 1 8 |g volume:34  |g year:2022  |g number:19  |g day:11  |g month:10  |g pages:8849-8857 
856 4 0 |u http://dx.doi.org/10.1021/acs.chemmater.2c02148  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_11 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 34  |j 2022  |e 19  |b 11  |c 10  |h 8849-8857