Likelihood ratio test for genetic association study with case-control data under Probit model

© 2021 Informa UK Limited, trading as Taylor & Francis Group.

Bibliographische Detailangaben
Veröffentlicht in:Journal of applied statistics. - 1991. - 49(2022), 14 vom: 24., Seite 3717-3731
1. Verfasser: Sheng, Zhen (VerfasserIn)
Weitere Verfasser: Liu, Yukun, Li, Pengfei, Qin, Jing
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Journal of applied statistics
Schlagworte:Journal Article Case–control data Probit model empirical likelihood likelihood ratio test mixed-effects model
LEADER 01000naa a22002652 4500
001 NLM34761826X
003 DE-627
005 20231226034246.0
007 cr uuu---uuuuu
008 231226s2022 xx |||||o 00| ||eng c
024 7 |a 10.1080/02664763.2021.1962261  |2 doi 
028 5 2 |a pubmed24n1158.xml 
035 |a (DE-627)NLM34761826X 
035 |a (NLM)36246859 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Sheng, Zhen  |e verfasserin  |4 aut 
245 1 0 |a Likelihood ratio test for genetic association study with case-control data under Probit model 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 19.10.2022 
500 |a published: Electronic-eCollection 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2021 Informa UK Limited, trading as Taylor & Francis Group. 
520 |a Probit and Logit models are the most popular for binary disease statusing in genetic association studies. They are equally used and nearly exchangeable in the analysis of prospectively collected data. However, no strong inferences were made based on Probit models for the retrospectively collected case-control data, especially in the presence of random effects. This paper systematically investigates the performance of Probit mixed-effects models for case-control data. We find that the retrospective likelihood has a closed-form, which motivates the development of likelihood ratio tests for genetic association. Specifically, we developed four likelihood ratio tests based on whether the disease prevalence is completely unavailable, partly available, or completely available. We show that their limiting distribution without a genetic effect is an equal mixture of two chi-square distributions with degrees of freedom 1 and 2, respectively. Our simulations indicate that they can have a remarkable power gain against the popular Logit-model-based score tests, and the disease prevalence information can enhance the power of the likelihood ratio tests. After analyzing a Kenya malaria data, we found out that the proposed test produces a significant result on the association of the gene ABO with malaria, whereas the commonly used competitors fail 
650 4 |a Journal Article 
650 4 |a Case–control data 
650 4 |a Probit model 
650 4 |a empirical likelihood 
650 4 |a likelihood ratio test 
650 4 |a mixed-effects model 
700 1 |a Liu, Yukun  |e verfasserin  |4 aut 
700 1 |a Li, Pengfei  |e verfasserin  |4 aut 
700 1 |a Qin, Jing  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of applied statistics  |d 1991  |g 49(2022), 14 vom: 24., Seite 3717-3731  |w (DE-627)NLM098188178  |x 0266-4763  |7 nnns 
773 1 8 |g volume:49  |g year:2022  |g number:14  |g day:24  |g pages:3717-3731 
856 4 0 |u http://dx.doi.org/10.1080/02664763.2021.1962261  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 49  |j 2022  |e 14  |b 24  |h 3717-3731