An automated method for graph-based chemical space exploration and transition state finding

© 2022 Wiley Periodicals LLC.

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 44(2023), 1 vom: 05. Jan., Seite 27-42
1. Verfasser: Ramos-Sánchez, Pablo (VerfasserIn)
Weitere Verfasser: Harvey, Jeremy N, Gámez, José A
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Journal Article activation energy automation chemical reactions chemical space cheminformatics graph theory organic reactions quantum chemical calculations reaction network transition states
LEADER 01000naa a22002652 4500
001 NLM347550053
003 DE-627
005 20231226034105.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1002/jcc.27011  |2 doi 
028 5 2 |a pubmed24n1158.xml 
035 |a (DE-627)NLM347550053 
035 |a (NLM)36239971 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Ramos-Sánchez, Pablo  |e verfasserin  |4 aut 
245 1 3 |a An automated method for graph-based chemical space exploration and transition state finding 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 22.11.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2022 Wiley Periodicals LLC. 
520 |a Algorithms that automatically explore the chemical space have been limited to chemical systems with a low number of atoms due to expensive involved quantum calculations and the large amount of possible reaction pathways. The method described here presents a novel solution to the problem of chemical exploration by generating reaction networks with heuristics based on chemical theory. First, a second version of the reaction network is determined through molecular graph transformations acting upon functional groups of the reacting. Only transformations that break two chemical bonds and form two new ones are considered, leading to a significant performance enhancement compared to previously presented algorithm. Second, energy barriers for this reaction network are estimated through quantum chemical calculations by a growing string method, which can also identify non-octet species missed during the previous step and further define the reaction network. The proposed algorithm has been successfully applied to five different chemical reactions, in all cases identifying the most important reaction pathways 
650 4 |a Journal Article 
650 4 |a activation energy 
650 4 |a automation 
650 4 |a chemical reactions 
650 4 |a chemical space 
650 4 |a cheminformatics 
650 4 |a graph theory 
650 4 |a organic reactions 
650 4 |a quantum chemical calculations 
650 4 |a reaction network 
650 4 |a transition states 
700 1 |a Harvey, Jeremy N  |e verfasserin  |4 aut 
700 1 |a Gámez, José A  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational chemistry  |d 1984  |g 44(2023), 1 vom: 05. Jan., Seite 27-42  |w (DE-627)NLM098138448  |x 1096-987X  |7 nnns 
773 1 8 |g volume:44  |g year:2023  |g number:1  |g day:05  |g month:01  |g pages:27-42 
856 4 0 |u http://dx.doi.org/10.1002/jcc.27011  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 44  |j 2023  |e 1  |b 05  |c 01  |h 27-42