Chiral Seeded Growth of Gold Nanorods Into Fourfold Twisted Nanoparticles with Plasmonic Optical Activity
© 2022 The Authors. Advanced Materials published by Wiley-VCH GmbH.
Veröffentlicht in: | Advanced materials (Deerfield Beach, Fla.). - 1998. - 35(2023), 1 vom: 11. Jan., Seite e2208299 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , , , , , , , , , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2023
|
Zugriff auf das übergeordnete Werk: | Advanced materials (Deerfield Beach, Fla.) |
Schlagworte: | Journal Article Au nanorods Wulff construction chiral seeded growth plasmonic optical activity twisted nanoparticles Cysteine K848JZ4886 Gold 7440-57-5 |
Zusammenfassung: | © 2022 The Authors. Advanced Materials published by Wiley-VCH GmbH. A robust and reproducible methodology to prepare stable inorganic nanoparticles with chiral morphology may hold the key to the practical utilization of these materials. An optimized chiral growth method to prepare fourfold twisted gold nanorods is described herein, where the amino acid cysteine is used as a dissymmetry inducer. Four tilted ridges are found to develop on the surface of single-crystal nanorods upon repeated reduction of HAuCl4 , in the presence of cysteine as the chiral inducer and ascorbic acid as a reducing agent. From detailed electron microscopy analysis of the crystallographic structures, it is proposed that the dissymmetry results from the development of chiral facets in the form of protrusions (tilted ridges) on the initial nanorods, eventually leading to a twisted shape. The role of cysteine is attributed to assisting enantioselective facet evolution, which is supported by density functional theory simulations of the surface energies, modified upon adsorption of the chiral molecule. The development of R-type and S-type chiral structures (small facets, terraces, or kinks) would thus be non-equal, removing the mirror symmetry of the Au NR and in turn resulting in a markedly chiral morphology with high plasmonic optical activity |
---|---|
Beschreibung: | Date Completed 06.01.2023 Date Revised 31.12.2023 published: Print-Electronic ErratumIn: Adv Mater. 2023 Dec 31;:e2312066. - PMID 38161223 Citation Status MEDLINE |
ISSN: | 1521-4095 |
DOI: | 10.1002/adma.202208299 |