MPED : Quantifying Point Cloud Distortion Based on Multiscale Potential Energy Discrepancy

In this article, we propose a new distortion quantification method for point clouds, the multiscale potential energy discrepancy (MPED). Currently, there is a lack of effective distortion quantification for a variety of point cloud perception tasks. Specifically, in human vision tasks, a distortion...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 5 vom: 12. Mai, Seite 6037-6054
1. Verfasser: Yang, Qi (VerfasserIn)
Weitere Verfasser: Zhang, Yujie, Chen, Siheng, Xu, Yiling, Sun, Jun, Ma, Zhan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM347385028
003 DE-627
005 20231226033707.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2022.3213831  |2 doi 
028 5 2 |a pubmed24n1157.xml 
035 |a (DE-627)NLM347385028 
035 |a (NLM)36223358 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Yang, Qi  |e verfasserin  |4 aut 
245 1 0 |a MPED  |b Quantifying Point Cloud Distortion Based on Multiscale Potential Energy Discrepancy 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 10.04.2023 
500 |a Date Revised 10.04.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In this article, we propose a new distortion quantification method for point clouds, the multiscale potential energy discrepancy (MPED). Currently, there is a lack of effective distortion quantification for a variety of point cloud perception tasks. Specifically, in human vision tasks, a distortion quantification method is used to predict human subjective scores and optimize the selection of human perception task parameters, such as dense point cloud compression and enhancement. In machine vision tasks, a distortion quantification method usually serves as loss function to guide the training of deep neural networks for unsupervised learning tasks (e.g., sparse point cloud reconstruction, completion, and upsampling). Therefore, an effective distortion quantification should be differentiable, distortion discriminable, and have low computational complexity. However, current distortion quantification cannot satisfy all three conditions. To fill this gap, we propose a new point cloud feature description method, the point potential energy (PPE), inspired by classical physics. We regard the point clouds are systems that have potential energy and the distortion can change the total potential energy. By evaluating various neighborhood sizes, the proposed MPED achieves global-local tradeoffs, capturing distortion in a multiscale fashion. We further theoretically show that classical Chamfer distance is a special case of our MPED. Extensive experiments show that the proposed MPED is superior to current methods on both human and machine perception tasks. Our code is available at https://github.com/Qi-Yangsjtu/MPED 
650 4 |a Journal Article 
700 1 |a Zhang, Yujie  |e verfasserin  |4 aut 
700 1 |a Chen, Siheng  |e verfasserin  |4 aut 
700 1 |a Xu, Yiling  |e verfasserin  |4 aut 
700 1 |a Sun, Jun  |e verfasserin  |4 aut 
700 1 |a Ma, Zhan  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 45(2023), 5 vom: 12. Mai, Seite 6037-6054  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:45  |g year:2023  |g number:5  |g day:12  |g month:05  |g pages:6037-6054 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2022.3213831  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 45  |j 2023  |e 5  |b 12  |c 05  |h 6037-6054