Looking Beyond Two Frames : End-to-End Multi-Object Tracking Using Spatial and Temporal Transformers

Tracking a time-varying indefinite number of objects in a video sequence over time remains a challenge despite recent advances in the field. Most existing approaches are not able to properly handle multi-object tracking challenges such as occlusion, in part because they ignore long-term temporal inf...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 11 vom: 10. Nov., Seite 12783-12797
1. Verfasser: Zhu, Tianyu (VerfasserIn)
Weitere Verfasser: Hiller, Markus, Ehsanpour, Mahsa, Ma, Rongkai, Drummond, Tom, Reid, Ian, Rezatofighi, Hamid
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM347306225
003 DE-627
005 20231226033522.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2022.3213073  |2 doi 
028 5 2 |a pubmed24n1157.xml 
035 |a (DE-627)NLM347306225 
035 |a (NLM)36215373 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhu, Tianyu  |e verfasserin  |4 aut 
245 1 0 |a Looking Beyond Two Frames  |b End-to-End Multi-Object Tracking Using Spatial and Temporal Transformers 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 03.10.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Tracking a time-varying indefinite number of objects in a video sequence over time remains a challenge despite recent advances in the field. Most existing approaches are not able to properly handle multi-object tracking challenges such as occlusion, in part because they ignore long-term temporal information. To address these shortcomings, we present MO3TR: a truly end-to-end Transformer-based online multi-object tracking (MOT) framework that learns to handle occlusions, track initiation and termination without the need for an explicit data association module or any heuristics. MO3TR encodes object interactions into long-term temporal embeddings using a combination of spatial and temporal Transformers, and recursively uses the information jointly with the input data to estimate the states of all tracked objects over time. The spatial attention mechanism enables our framework to learn implicit representations between all the objects and the objects to the measurements, while the temporal attention mechanism focuses on specific parts of past information, allowing our approach to resolve occlusions over multiple frames. Our experiments demonstrate the potential of this new approach, achieving results on par with or better than the current state-of-the-art on multiple MOT metrics for several popular multi-object tracking benchmarks 
650 4 |a Journal Article 
700 1 |a Hiller, Markus  |e verfasserin  |4 aut 
700 1 |a Ehsanpour, Mahsa  |e verfasserin  |4 aut 
700 1 |a Ma, Rongkai  |e verfasserin  |4 aut 
700 1 |a Drummond, Tom  |e verfasserin  |4 aut 
700 1 |a Reid, Ian  |e verfasserin  |4 aut 
700 1 |a Rezatofighi, Hamid  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 45(2023), 11 vom: 10. Nov., Seite 12783-12797  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:45  |g year:2023  |g number:11  |g day:10  |g month:11  |g pages:12783-12797 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2022.3213073  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 45  |j 2023  |e 11  |b 10  |c 11  |h 12783-12797