Narrowing the Gap : Improved Detector Training With Noisy Location Annotations

Deep learning methods require massive of annotated data for optimizing parameters. For example, datasets attached with accurate bounding box annotations are essential for modern object detection tasks. However, labeling with such pixel-wise accuracy is laborious and time-consuming, and elaborate lab...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 31(2022) vom: 05., Seite 6369-6380
1. Verfasser: Wang, Shaoru (VerfasserIn)
Weitere Verfasser: Gao, Jin, Li, Bing, Hu, Weiming
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM34730608X
003 DE-627
005 20250303225212.0
007 cr uuu---uuuuu
008 231226s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2022.3211468  |2 doi 
028 5 2 |a pubmed25n1157.xml 
035 |a (DE-627)NLM34730608X 
035 |a (NLM)36215362 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wang, Shaoru  |e verfasserin  |4 aut 
245 1 0 |a Narrowing the Gap  |b Improved Detector Training With Noisy Location Annotations 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 19.10.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Deep learning methods require massive of annotated data for optimizing parameters. For example, datasets attached with accurate bounding box annotations are essential for modern object detection tasks. However, labeling with such pixel-wise accuracy is laborious and time-consuming, and elaborate labeling procedures are indispensable for reducing man-made noise, involving annotation review and acceptance testing. In this paper, we focus on the impact of noisy location annotations on the performance of object detection approaches and aim to, on the user side, reduce the adverse effect of the noise. First, noticeable performance degradation is experimentally observed for both one-stage and two-stage detectors when noise is introduced to the bounding box annotations. For instance, our synthesized noise results in performance decrease from 38.9% AP to 33.6% AP for FCOS detector on COCO test split, and 37.8%AP to 33.7%AP for Faster R-CNN. Second, a self-correction technique based on a Bayesian filter for prediction ensemble is proposed to better exploit the noisy location annotations following a Teacher-Student learning paradigm. Experiments for both synthesized and real-world scenarios consistently demonstrate the effectiveness of our approach, e.g., our method increases the degraded performance of the FCOS detector from 33.6% AP to 35.6% AP on COCO 
650 4 |a Journal Article 
700 1 |a Gao, Jin  |e verfasserin  |4 aut 
700 1 |a Li, Bing  |e verfasserin  |4 aut 
700 1 |a Hu, Weiming  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 31(2022) vom: 05., Seite 6369-6380  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnas 
773 1 8 |g volume:31  |g year:2022  |g day:05  |g pages:6369-6380 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2022.3211468  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 31  |j 2022  |b 05  |h 6369-6380