Unsupervised Outlier Detection Using Memory and Contrastive Learning

Outlier detection is to separate anomalous data from inliers in the dataset. Recently, the most deep learning methods of outlier detection leverage an auxiliary reconstruction task by assuming that outliers are more difficult to recover than normal samples (inliers). However, it is not always true i...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 31(2022) vom: 05., Seite 6440-6454
Auteur principal: Huyan, Ning (Auteur)
Autres auteurs: Quan, Dou, Zhang, Xiangrong, Liang, Xuefeng, Chanussot, Jocelyn, Jiao, Licheng
Format: Article en ligne
Langue:English
Publié: 2022
Accès à la collection:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Sujets:Journal Article