A Joint Modeling Approach for Longitudinal Outcomes and Non-ignorable Dropout under Population Heterogeneity in Mental Health Studies

© 2021 Informa UK Limited, trading as Taylor & Francis Group.

Bibliographische Detailangaben
Veröffentlicht in:Journal of applied statistics. - 1991. - 49(2022), 13 vom: 13., Seite 3361-3376
1. Verfasser: Park, Jung Yeon (VerfasserIn)
Weitere Verfasser: Wall, Melanie M, Moustaki, Irini, Grossman, Arnold H
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Journal of applied statistics
Schlagworte:Journal Article Latent growth curve MNAR drop-out finite mixture model mental health survival analysis
LEADER 01000caa a22002652c 4500
001 NLM347290434
003 DE-627
005 20250303224956.0
007 cr uuu---uuuuu
008 231226s2022 xx |||||o 00| ||eng c
024 7 |a 10.1080/02664763.2021.1945000  |2 doi 
028 5 2 |a pubmed25n1157.xml 
035 |a (DE-627)NLM347290434 
035 |a (NLM)36213777 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Park, Jung Yeon  |e verfasserin  |4 aut 
245 1 2 |a A Joint Modeling Approach for Longitudinal Outcomes and Non-ignorable Dropout under Population Heterogeneity in Mental Health Studies 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 11.10.2022 
500 |a published: Electronic-eCollection 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2021 Informa UK Limited, trading as Taylor & Francis Group. 
520 |a The paper proposes a joint mixture model to model non-ignorable drop-out in longitudinal cohort studies of mental health outcomes. The model combines a (non)-linear growth curve model for the time-dependent outcomes and a discrete-time survival model for the drop-out with random effects shared by the two sub-models. The mixture part of the model takes into account population heterogeneity by accounting for latent subgroups of the shared effects that may lead to different patterns for the growth and the drop-out tendency. A simulation study shows that the joint mixture model provides greater precision in estimating the average slope and covariance matrix of random effects. We illustrate its benefits with data from a longitudinal cohort study that characterizes depression symptoms over time yet is hindered by non-trivial participant drop-out 
650 4 |a Journal Article 
650 4 |a Latent growth curve 
650 4 |a MNAR drop-out 
650 4 |a finite mixture model 
650 4 |a mental health 
650 4 |a survival analysis 
700 1 |a Wall, Melanie M  |e verfasserin  |4 aut 
700 1 |a Moustaki, Irini  |e verfasserin  |4 aut 
700 1 |a Grossman, Arnold H  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of applied statistics  |d 1991  |g 49(2022), 13 vom: 13., Seite 3361-3376  |w (DE-627)NLM098188178  |x 0266-4763  |7 nnas 
773 1 8 |g volume:49  |g year:2022  |g number:13  |g day:13  |g pages:3361-3376 
856 4 0 |u http://dx.doi.org/10.1080/02664763.2021.1945000  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 49  |j 2022  |e 13  |b 13  |h 3361-3376