|
|
|
|
LEADER |
01000caa a22002652c 4500 |
001 |
NLM347290434 |
003 |
DE-627 |
005 |
20250303224956.0 |
007 |
cr uuu---uuuuu |
008 |
231226s2022 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1080/02664763.2021.1945000
|2 doi
|
028 |
5 |
2 |
|a pubmed25n1157.xml
|
035 |
|
|
|a (DE-627)NLM347290434
|
035 |
|
|
|a (NLM)36213777
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Park, Jung Yeon
|e verfasserin
|4 aut
|
245 |
1 |
2 |
|a A Joint Modeling Approach for Longitudinal Outcomes and Non-ignorable Dropout under Population Heterogeneity in Mental Health Studies
|
264 |
|
1 |
|c 2022
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 11.10.2022
|
500 |
|
|
|a published: Electronic-eCollection
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2021 Informa UK Limited, trading as Taylor & Francis Group.
|
520 |
|
|
|a The paper proposes a joint mixture model to model non-ignorable drop-out in longitudinal cohort studies of mental health outcomes. The model combines a (non)-linear growth curve model for the time-dependent outcomes and a discrete-time survival model for the drop-out with random effects shared by the two sub-models. The mixture part of the model takes into account population heterogeneity by accounting for latent subgroups of the shared effects that may lead to different patterns for the growth and the drop-out tendency. A simulation study shows that the joint mixture model provides greater precision in estimating the average slope and covariance matrix of random effects. We illustrate its benefits with data from a longitudinal cohort study that characterizes depression symptoms over time yet is hindered by non-trivial participant drop-out
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Latent growth curve
|
650 |
|
4 |
|a MNAR drop-out
|
650 |
|
4 |
|a finite mixture model
|
650 |
|
4 |
|a mental health
|
650 |
|
4 |
|a survival analysis
|
700 |
1 |
|
|a Wall, Melanie M
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Moustaki, Irini
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Grossman, Arnold H
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Journal of applied statistics
|d 1991
|g 49(2022), 13 vom: 13., Seite 3361-3376
|w (DE-627)NLM098188178
|x 0266-4763
|7 nnas
|
773 |
1 |
8 |
|g volume:49
|g year:2022
|g number:13
|g day:13
|g pages:3361-3376
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1080/02664763.2021.1945000
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 49
|j 2022
|e 13
|b 13
|h 3361-3376
|