|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM347290396 |
003 |
DE-627 |
005 |
20231226033501.0 |
007 |
cr uuu---uuuuu |
008 |
231226s2022 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1080/02664763.2021.1944996
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1157.xml
|
035 |
|
|
|a (DE-627)NLM347290396
|
035 |
|
|
|a (NLM)36213774
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Bouaziz, Olivier
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Regression modelling of interval censored data based on the adaptive ridge procedure
|
264 |
|
1 |
|c 2022
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 11.10.2022
|
500 |
|
|
|a published: Electronic-eCollection
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2021 Informa UK Limited, trading as Taylor & Francis Group.
|
520 |
|
|
|a A new method for the analysis of time to ankylosis complication on a dataset of replanted teeth is proposed. In this context of left-censored, interval-censored and right-censored data, a Cox model with piecewise constant baseline hazard is introduced. Estimation is carried out with the expectation maximisation (EM) algorithm by treating the true event times as unobserved variables. This estimation procedure is shown to produce a block diagonal Hessian matrix of the baseline parameters. Taking advantage of this interesting feature in the EM algorithm, a L 0 penalised likelihood method is implemented in order to automatically determine the number and locations of the cuts of the baseline hazard. This procedure allows to detect specific areas of time where patients are at greater risks for ankylosis. The method can be directly extended to the inclusion of exact observations and to a cure fraction. Theoretical results are obtained which allow to derive statistical inference of the model parameters from asymptotic likelihood theory. Through simulation studies, the penalisation technique is shown to provide a good fit of the baseline hazard and precise estimations of the resulting regression parameters
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a 62N01
|
650 |
|
4 |
|a 62N02
|
650 |
|
4 |
|a 62N03
|
650 |
|
4 |
|a Adaptive ridge procedure
|
650 |
|
4 |
|a EM algorithm
|
650 |
|
4 |
|a cure model
|
650 |
|
4 |
|a interval censoring
|
650 |
|
4 |
|a penalised likelihood
|
650 |
|
4 |
|a piecewise constant hazard
|
700 |
1 |
|
|a Lauridsen, Eva
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Nuel, Grégory
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Journal of applied statistics
|d 1991
|g 49(2022), 13 vom: 13., Seite 3319-3343
|w (DE-627)NLM098188178
|x 0266-4763
|7 nnns
|
773 |
1 |
8 |
|g volume:49
|g year:2022
|g number:13
|g day:13
|g pages:3319-3343
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1080/02664763.2021.1944996
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 49
|j 2022
|e 13
|b 13
|h 3319-3343
|