From Heterostructures to Solid-Solutions : Structural Tunability in Mixed Halide Perovskites

© 2023 The Authors. Advanced Materials published by Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 35(2023), 11 vom: 01. März, Seite e2205923
1. Verfasser: Shin, Donghoon (VerfasserIn)
Weitere Verfasser: Lai, Minliang, Shin, Yongjin, Du, Jingshan S, Jibril, Liban, Rondinelli, James M, Mirkin, Chad A
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article halide perovskites nanolithography robust heterostructures solid-solutions structural tunability suppressed photoinduced phase segregations
Beschreibung
Zusammenfassung:© 2023 The Authors. Advanced Materials published by Wiley-VCH GmbH.
The stability, reliability, and performance of halide-perovskite-based devices depend upon the structure, composition, and particle size of the device-enabling materials. Indeed, the degree of ion mixing in multicomponent perovskite crystals, although challenging to control, is a key factor in determining properties. Herein, an emerging method termed evaporation-crystallization polymer pen lithography is used to synthesize and systematically study the degree of ionic mixing of Cs0.5 FA0.5 PbX3 (FA = formamidinium; X = halide anion, ABX3 ) crystals, as a function of size, temperature, and composition. These experiments have led to the discovery of a heterostructure morphology where the A-site cations, Cs and FA, are segregated into the core and edge layers, respectively. Simulation and experimental results indicate that the heterostructures form as a consequence of a combination of both differences in solubility of the two ions in solution and the enthalpic preference for Cs-FA ion segregation. This preference for segregation can be overcome to form a solid-solution by decreasing crystal size (<60 nm) or increasing temperature. Finally, these tools are utilized to identify and synthesize solid-solution nanocrystals of Cs0.5 FA0.5 Pb(Br/I)3 that significantly suppress photoinduced anion migration compared to their bulk counterparts, offering a route to deliberately designed photostable optoelectronic materials
Beschreibung:Date Completed 20.03.2023
Date Revised 20.03.2023
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202205923