|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM347208886 |
003 |
DE-627 |
005 |
20231226033308.0 |
007 |
cr uuu---uuuuu |
008 |
231226s2023 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/jcc.27021
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1157.xml
|
035 |
|
|
|a (DE-627)NLM347208886
|
035 |
|
|
|a (NLM)36205560
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Kido, Kentaro
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Conformation, hydration, and ligand exchange process of ruthenium nitrosyl complexes in aqueous solution
|b Free-energy calculations by a combination of molecular-orbital theories and different solvent models
|
264 |
|
1 |
|c 2023
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 06.01.2023
|
500 |
|
|
|a Date Revised 11.01.2023
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2022 Wiley Periodicals LLC.
|
520 |
|
|
|a Distribution of solvent molecules near transition-metal complex is key information to comprehend the functionality, reactivity, and so forth. However, polarizable continuum solvent models still are the standard and conventional partner of molecular-orbital (MO) calculations in the solution system including transition-metal complex. In this study, we investigate the conformation, hydration, and ligand substitution reaction between NO2 - and H2 O in aqueous solution for [Ru(NO)(OH)(NO2 )4 ]2- (A), [Ru(NO)(OH)(NO2 )3 (ONO)]2- (B), and [Ru(NO)(OH)(NO2 )3 (H2 O)]- (C) using a combination method of MO theories and a state-of-the-art molecular solvation technique (NI-MC-MOZ-SCF). A dominant species is found in the complex B conformers and, as expected, different between the solvent models, which reveals that molecular solvation beyond continuum media treatment are required for a reliable description of solvation near transition-metal complex. In the stability constant evaluation of ligand substitution reaction, an assumption that considers the direct association between the dissociated NO2 - and complex C is useful to obtain a reliable stability constant
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a free energy and multicenter molecular Ornstein-Zernike method
|
650 |
|
4 |
|a hydration structure
|
650 |
|
4 |
|a molecular-orbital calculation
|
650 |
|
4 |
|a ruthenium nitrosyl
|
700 |
1 |
|
|a Kaneko, Masashi
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Journal of computational chemistry
|d 1984
|g 44(2023), 4 vom: 05. Feb., Seite 546-558
|w (DE-627)NLM098138448
|x 1096-987X
|7 nnns
|
773 |
1 |
8 |
|g volume:44
|g year:2023
|g number:4
|g day:05
|g month:02
|g pages:546-558
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/jcc.27021
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 44
|j 2023
|e 4
|b 05
|c 02
|h 546-558
|