Using genomic prediction with crop growth models enables the prediction of associated traits in wheat

© The Author(s) 2022. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissionsoup.com.

Bibliographische Detailangaben
Veröffentlicht in:Journal of experimental botany. - 1985. - 74(2023), 5 vom: 13. März, Seite 1389-1402
1. Verfasser: Jighly, Abdulqader (VerfasserIn)
Weitere Verfasser: Thayalakumaran, Thabo, O'Leary, Garry J, Kant, Surya, Panozzo, Joe, Aggarwal, Rajat, Hessel, David, Forrest, Kerrie L, Technow, Frank, Tibbits, Josquin F G, Totir, Radu, Hayden, Matthew J, Munkvold, Jesse, Daetwyler, Hans D
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Journal of experimental botany
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Biophysical crop models genotype by environment interaction genotype-specific parameters physiology wheat whole genome prediction
LEADER 01000naa a22002652 4500
001 NLM347204546
003 DE-627
005 20231226033302.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1093/jxb/erac393  |2 doi 
028 5 2 |a pubmed24n1157.xml 
035 |a (DE-627)NLM347204546 
035 |a (NLM)36205117 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Jighly, Abdulqader  |e verfasserin  |4 aut 
245 1 0 |a Using genomic prediction with crop growth models enables the prediction of associated traits in wheat 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 15.03.2023 
500 |a Date Revised 04.04.2023 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a © The Author(s) 2022. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissionsoup.com. 
520 |a Crop growth models (CGM) can predict the performance of a cultivar in untested environments by sampling genotype-specific parameters. As they cannot predict the performance of new cultivars, it has been proposed to integrate CGMs with whole genome prediction (WGP) to combine the benefits of both models. Here, we used a CGM-WGP model to predict the performance of new wheat (Triticum aestivum) genotypes. The CGM was designed to predict phenology, nitrogen, and biomass traits. The CGM-WGP model simulated more heritable GSPs compared with the CGM and gave smaller errors for the observed phenotypes. The WGP model performed better when predicting yield, grain number, and grain protein content, but showed comparable performance to the CGM-WGP model for heading and physiological maturity dates. However, the CGM-WGP model was able to predict unobserved traits (for which there were no phenotypic records in the reference population). The CGM-WGP model also showed superior performance when predicting unrelated individuals that clustered separately from the reference population. Our results demonstrate new advantages for CGM-WGP modelling and suggest future efforts should focus on calibrating CGM-WGP models using high-throughput phenotypic measures that are cheaper and less laborious to collect 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a Biophysical crop models 
650 4 |a genotype by environment interaction 
650 4 |a genotype-specific parameters 
650 4 |a physiology 
650 4 |a wheat 
650 4 |a whole genome prediction 
700 1 |a Thayalakumaran, Thabo  |e verfasserin  |4 aut 
700 1 |a O'Leary, Garry J  |e verfasserin  |4 aut 
700 1 |a Kant, Surya  |e verfasserin  |4 aut 
700 1 |a Panozzo, Joe  |e verfasserin  |4 aut 
700 1 |a Aggarwal, Rajat  |e verfasserin  |4 aut 
700 1 |a Hessel, David  |e verfasserin  |4 aut 
700 1 |a Forrest, Kerrie L  |e verfasserin  |4 aut 
700 1 |a Technow, Frank  |e verfasserin  |4 aut 
700 1 |a Tibbits, Josquin F G  |e verfasserin  |4 aut 
700 1 |a Totir, Radu  |e verfasserin  |4 aut 
700 1 |a Hayden, Matthew J  |e verfasserin  |4 aut 
700 1 |a Munkvold, Jesse  |e verfasserin  |4 aut 
700 1 |a Daetwyler, Hans D  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of experimental botany  |d 1985  |g 74(2023), 5 vom: 13. März, Seite 1389-1402  |w (DE-627)NLM098182706  |x 1460-2431  |7 nnns 
773 1 8 |g volume:74  |g year:2023  |g number:5  |g day:13  |g month:03  |g pages:1389-1402 
856 4 0 |u http://dx.doi.org/10.1093/jxb/erac393  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 74  |j 2023  |e 5  |b 13  |c 03  |h 1389-1402