Resting-State fMRI Whole Brain Network Function Plasticity Analysis in Attention Deficit Hyperactivity Disorder

Copyright © 2022 Yi Tang et al.

Détails bibliographiques
Publié dans:Neural plasticity. - 1998. - 2022(2022) vom: 08., Seite 4714763
Auteur principal: Tang, Yi (Auteur)
Autres auteurs: Zheng, Shuxing, Tian, Yin
Format: Article en ligne
Langue:English
Publié: 2022
Accès à la collection:Neural plasticity
Sujets:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000caa a22002652c 4500
001 NLM347146864
003 DE-627
005 20250303222852.0
007 cr uuu---uuuuu
008 231226s2022 xx |||||o 00| ||eng c
024 7 |a 10.1155/2022/4714763  |2 doi 
028 5 2 |a pubmed25n1156.xml 
035 |a (DE-627)NLM347146864 
035 |a (NLM)36199291 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Tang, Yi  |e verfasserin  |4 aut 
245 1 0 |a Resting-State fMRI Whole Brain Network Function Plasticity Analysis in Attention Deficit Hyperactivity Disorder 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 07.10.2022 
500 |a Date Revised 28.10.2022 
500 |a published: Electronic-eCollection 
500 |a Citation Status MEDLINE 
520 |a Copyright © 2022 Yi Tang et al. 
520 |a Attention deficit hyperactivity disorder (ADHD) is a common mental disorder in children, which is related to inattention and hyperactivity. These symptoms are associated with abnormal interactions of brain networks. We used resting-state functional magnetic resonance imaging (rs-fMRI) based on the graph theory to explore the topology property changes of brain networks between an ADHD group and a normal group. The more refined AAL_1024 atlas was used to construct the functional networks with high nodal resolution, for detecting more subtle changes in brain regions and differences among groups. We compared altered topology properties of brain network between the groups from multilevel, mainly including modularity at mesolevel. Specifically, we analyzed the similarities and differences of module compositions between the two groups. The results found that the ADHD group showed stronger economic small-world network property, while the clustering coefficient was significantly lower than the normal group; the frontal and occipital lobes showed smaller node degree and global efficiency between disease statuses. The modularity results also showed that the module number of the ADHD group decreased, and the ADHD group had short-range overconnectivity within module and long-range underconnectivity between modules. Moreover, modules containing long-range connections between the frontal and occipital lobes disappeared, indicating that there was lack of top-down control information between the executive control region and the visual processing region in the ADHD group. Our results suggested that these abnormal regions were related to executive control and attention deficit of ADHD patients. These findings helped to better understand how brain function correlates with the ADHD symptoms and complement the fewer modularity elaboration of ADHD research 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Zheng, Shuxing  |e verfasserin  |4 aut 
700 1 |a Tian, Yin  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Neural plasticity  |d 1998  |g 2022(2022) vom: 08., Seite 4714763  |w (DE-627)NLM098558390  |x 1687-5443  |7 nnas 
773 1 8 |g volume:2022  |g year:2022  |g day:08  |g pages:4714763 
856 4 0 |u http://dx.doi.org/10.1155/2022/4714763  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_21 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 2022  |j 2022  |b 08  |h 4714763