Improving Video Instance Segmentation via Temporal Pyramid Routing

Video Instance Segmentation (VIS) is a new and inherently multi-task problem, which aims to detect, segment, and track each instance in a video sequence. Existing approaches are mainly based on single-frame features or single-scale features of multiple frames, where either temporal information or mu...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 5 vom: 04. Mai, Seite 6594-6601
1. Verfasser: Li, Xiangtai (VerfasserIn)
Weitere Verfasser: He, Hao, Yang, Yibo, Ding, Henghui, Yang, Kuiyuan, Cheng, Guangliang, Tong, Yunhai, Tao, Dacheng
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM34710150X
003 DE-627
005 20231226033029.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2022.3211612  |2 doi 
028 5 2 |a pubmed24n1156.xml 
035 |a (DE-627)NLM34710150X 
035 |a (NLM)36194713 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Li, Xiangtai  |e verfasserin  |4 aut 
245 1 0 |a Improving Video Instance Segmentation via Temporal Pyramid Routing 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 10.04.2023 
500 |a Date Revised 11.04.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Video Instance Segmentation (VIS) is a new and inherently multi-task problem, which aims to detect, segment, and track each instance in a video sequence. Existing approaches are mainly based on single-frame features or single-scale features of multiple frames, where either temporal information or multi-scale information is ignored. To incorporate both temporal and scale information, we propose a Temporal Pyramid Routing (TPR) strategy to conditionally align and conduct pixel-level aggregation from a feature pyramid pair of two adjacent frames. Specifically, TPR contains two novel components, including Dynamic Aligned Cell Routing (DACR) and Cross Pyramid Routing (CPR), where DACR is designed for aligning and gating pyramid features across temporal dimension, while CPR transfers temporally aggregated features across scale dimension. Moreover, our approach is a light-weight and plug-and-play module and can be easily applied to existing instance segmentation methods. Extensive experiments on three datasets including YouTube-VIS (2019, 2021) and Cityscapes-VPS demonstrate the effectiveness and efficiency of the proposed approach on several state-of-the-art instance and panoptic segmentation methods. Codes will be publicly available at https://github.com/lxtGH/TemporalPyramidRouting 
650 4 |a Journal Article 
700 1 |a He, Hao  |e verfasserin  |4 aut 
700 1 |a Yang, Yibo  |e verfasserin  |4 aut 
700 1 |a Ding, Henghui  |e verfasserin  |4 aut 
700 1 |a Yang, Kuiyuan  |e verfasserin  |4 aut 
700 1 |a Cheng, Guangliang  |e verfasserin  |4 aut 
700 1 |a Tong, Yunhai  |e verfasserin  |4 aut 
700 1 |a Tao, Dacheng  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 45(2023), 5 vom: 04. Mai, Seite 6594-6601  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:45  |g year:2023  |g number:5  |g day:04  |g month:05  |g pages:6594-6601 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2022.3211612  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 45  |j 2023  |e 5  |b 04  |c 05  |h 6594-6601