Recursive-NeRF : An Efficient and Dynamically Growing NeRF

View synthesis methods using implicit continuous shape representations learned from a set of images, such as the Neural Radiance Field (NeRF) method, have gained increasing attention due to their high quality imagery and scalability to high resolution. However, the heavy computation required by its...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on visualization and computer graphics. - 1996. - 29(2023), 12 vom: 04. Dez., Seite 5124-5136
Auteur principal: Yang, Guo-Wei (Auteur)
Autres auteurs: Zhou, Wen-Yang, Peng, Hao-Yang, Liang, Dun, Mu, Tai-Jiang, Hu, Shi-Min
Format: Article en ligne
Langue:English
Publié: 2023
Accès à la collection:IEEE transactions on visualization and computer graphics
Sujets:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM347101496
003 DE-627
005 20250303222212.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2022.3204608  |2 doi 
028 5 2 |a pubmed25n1156.xml 
035 |a (DE-627)NLM347101496 
035 |a (NLM)36194712 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Yang, Guo-Wei  |e verfasserin  |4 aut 
245 1 0 |a Recursive-NeRF  |b An Efficient and Dynamically Growing NeRF 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 22.11.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a View synthesis methods using implicit continuous shape representations learned from a set of images, such as the Neural Radiance Field (NeRF) method, have gained increasing attention due to their high quality imagery and scalability to high resolution. However, the heavy computation required by its volumetric approach prevents NeRF from being useful in practice; minutes are taken to render a single image of a few megapixels. Now, an image of a scene can be rendered in a level-of-detail manner, so we posit that a complicated region of the scene should be represented by a large neural network while a small neural network is capable of encoding a simple region, enabling a balance between efficiency and quality. Recursive-NeRF is our embodiment of this idea, providing an efficient and adaptive rendering and training approach for NeRF. The core of Recursive-NeRF learns uncertainties for query coordinates, representing the quality of the predicted color and volumetric intensity at each level. Only query coordinates with high uncertainties are forwarded to the next level to a bigger neural network with a more powerful representational capability. The final rendered image is a composition of results from neural networks of all levels. Our evaluation on public datasets and a large-scale scene dataset we collected shows that Recursive-NeRF is more efficient than NeRF while providing state-of-the-art quality. The code will be available at https://github.com/Gword/Recursive-NeRF 
650 4 |a Journal Article 
700 1 |a Zhou, Wen-Yang  |e verfasserin  |4 aut 
700 1 |a Peng, Hao-Yang  |e verfasserin  |4 aut 
700 1 |a Liang, Dun  |e verfasserin  |4 aut 
700 1 |a Mu, Tai-Jiang  |e verfasserin  |4 aut 
700 1 |a Hu, Shi-Min  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 29(2023), 12 vom: 04. Dez., Seite 5124-5136  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnas 
773 1 8 |g volume:29  |g year:2023  |g number:12  |g day:04  |g month:12  |g pages:5124-5136 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2022.3204608  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 29  |j 2023  |e 12  |b 04  |c 12  |h 5124-5136