Photodeformable Azo Polymer Janus Particles Obtained upon Nonsolvent-Induced Phase Separation and Asynchronous Aggregation

Photodeformable submicron Janus particles (JPs), containing an epoxy-based azo polymer (BP-AZ-CN) and poly(methyl methacrylate) (PMMA), were fabricated upon nonsolvent-induced phase separation. The formation of the JPs was induced by gradually adding deionized water into a tetrahydrofuran (THF) solu...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 38(2022), 41 vom: 18. Okt., Seite 12466-12479
1. Verfasser: Liao, Chuyi (VerfasserIn)
Weitere Verfasser: Wang, Xiaogong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM347100783
003 DE-627
005 20231226033028.0
007 cr uuu---uuuuu
008 231226s2022 xx |||||o 00| ||eng c
024 7 |a 10.1021/acs.langmuir.2c01682  |2 doi 
028 5 2 |a pubmed24n1156.xml 
035 |a (DE-627)NLM347100783 
035 |a (NLM)36194641 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Liao, Chuyi  |e verfasserin  |4 aut 
245 1 0 |a Photodeformable Azo Polymer Janus Particles Obtained upon Nonsolvent-Induced Phase Separation and Asynchronous Aggregation 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 18.10.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Photodeformable submicron Janus particles (JPs), containing an epoxy-based azo polymer (BP-AZ-CN) and poly(methyl methacrylate) (PMMA), were fabricated upon nonsolvent-induced phase separation. The formation of the JPs was induced by gradually adding deionized water into a tetrahydrofuran (THF) solution of both polymers. The results show that the two polymers start to precipitate from the solution at almost the same water content and immediately separate into two phases in each particle due to the strong incompatibility between the two components. After the nucleation, the sizes of the aggregates increase with increasing water content in the following growth stage. The amount of BP-AZ-CN molecules assembling into the aggregates is controlled by the water content in the medium, while the aggregation of PMMA molecules is a slow diffusion-controlled process due to the much higher molecular weight of this polymer. With a further increase in the water content in the dispersion medium, the swollen aggregates collapse to form JPs. Interestingly, when a dispersion with a water content of 50 vol % is diluted with a THF/H2O mixture with the same water content, the shapes of the JPs are significantly modified and vitrified after removal of THF through evaporation. By increasing the dilution multiples adopted to dilute the intermediate dispersions, JPs with more asymmetric shapes are obtained due to the enhanced asynchronous aggregation. Ternary phase diagrams calculated according to the Flory-Huggins theory provide a semi-quantitative description and rationalization of the phase separation behavior related to the thermodynamic factors. The differences in the transport behavior and aggregation dynamics of the two polymers are also proven to be critical for the formation of the asymmetric structures. Upon irradiation, the BP-AZ-CN compartments of JPs exhibit remarkable elongation along the electric vibrational direction of a linearly polarized laser beam at a wavelength of 488 nm 
650 4 |a Journal Article 
700 1 |a Wang, Xiaogong  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Langmuir : the ACS journal of surfaces and colloids  |d 1992  |g 38(2022), 41 vom: 18. Okt., Seite 12466-12479  |w (DE-627)NLM098181009  |x 1520-5827  |7 nnns 
773 1 8 |g volume:38  |g year:2022  |g number:41  |g day:18  |g month:10  |g pages:12466-12479 
856 4 0 |u http://dx.doi.org/10.1021/acs.langmuir.2c01682  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_22 
912 |a GBV_ILN_350 
912 |a GBV_ILN_721 
951 |a AR 
952 |d 38  |j 2022  |e 41  |b 18  |c 10  |h 12466-12479