|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM347053556 |
003 |
DE-627 |
005 |
20231226032917.0 |
007 |
cr uuu---uuuuu |
008 |
231226s2022 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202206393
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1156.xml
|
035 |
|
|
|a (DE-627)NLM347053556
|
035 |
|
|
|a (NLM)36189869
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Zhang, Chengcheng
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Dielectric Polymer with Designable Large Motion under Low Electric Field
|
264 |
|
1 |
|c 2022
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 19.12.2022
|
500 |
|
|
|a Date Revised 22.12.2022
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2022 Wiley-VCH GmbH.
|
520 |
|
|
|a Dielectric elastomers (DEs) can demonstrate fast and large in-plane expansion/contraction due to electric field (e-field)-induced Maxwell stress. For robotic applications, it is often necessary that the in-plane actuation is converted into out-of-plane motions with mechanical frames. Despite their performance appeal, their high driving e-field (20-100 V µm-1 ) demands bulky power accessories and severely compromises their durability. Here, a dielectric polymer that can be programmed into diverse motions actuated under a low e-field (2-10 V µm-1 ) is reported. The material is a crystalline dynamic covalent network that can be reconfigured into arbitrary 3D geometries. This gives rise to a geometric effect that markedly amplifies the actuation, leading to designable large motions when the dielectric polymer is heated above its melting temperature to become a DE. Additionally, the crystallization transition enables dynamic multimodal motions and active deployability. These attributes result in unique design versatility for soft robots
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a 3D actuators
|
650 |
|
4 |
|a dielectric polymer
|
650 |
|
4 |
|a dynamic covalent networks
|
650 |
|
4 |
|a low electric field
|
700 |
1 |
|
|a Jin, Binjie
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Cao, Xunuo
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Chen, Zheqi
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Miao, Wusha
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Yang, Xuxu
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Luo, Yingwu
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Li, Tiefeng
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Xie, Tao
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 34(2022), 50 vom: 02. Dez., Seite e2206393
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:34
|g year:2022
|g number:50
|g day:02
|g month:12
|g pages:e2206393
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202206393
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 34
|j 2022
|e 50
|b 02
|c 12
|h e2206393
|