|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM347053432 |
003 |
DE-627 |
005 |
20231226032916.0 |
007 |
cr uuu---uuuuu |
008 |
231226s2022 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202207747
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1156.xml
|
035 |
|
|
|a (DE-627)NLM347053432
|
035 |
|
|
|a (NLM)36189857
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Feng, Yangyang
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Decoupled Electrochemical Hydrazine "Splitting" via a Rechargeable Zn-Hydrazine Battery
|
264 |
|
1 |
|c 2022
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 23.12.2022
|
500 |
|
|
|a Date Revised 23.12.2022
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2022 Wiley-VCH GmbH.
|
520 |
|
|
|a Hydrogen generation via electrochemical splitting plays an important role to achieve hydrogen economy. However, the large-scale application is highly limited by high cost and low efficiency. Herein, a new type of rechargeable Zn-hydrazine (Zn-Hz) battery is proposed and realized by a bifunctional electrocatalyst based on two separate cathodic reactions of hydrogen evolution (discharge: 2H2 O + 2e- → H2 + 2OH- ) and hydrazine oxidation (charge: 1 / 2 N 2 H 4 + 2 OH - → 1 / 2 N 2 + 2 H 2 O + 2 e - $1{\rm{/}}2\,{{\rm{N}}_2}{{\rm{H}}_4}{\bm{ + }}2{\rm{O}}{{\rm{H}}^{\bm{ - }}}{\bm{ \to }}1{\rm{/}}2\,{{\rm{N}}_2}{\bm{ + }}2{{\rm{H}}_2}{\rm{O}}{\bm{ + }}2{e^{\bm{ - }}}$ ). This Zn-Hz battery, driven by temporally decoupled electrochemical hydrazine splitting on the cathode during discharge and charge processes, can generate separated hydrogen without purification. When the highly active bifunctional cathode of 3D Mo2 C/NiC/CS is paired with Zn foil, the Zn-Hz battery can achieve efficient hydrogen generation with a low energy input of less than 0.4 V (77.2 kJ mol-1 ) and high energy efficiency of 96%. Remarkably, this battery exhibits outstanding long-term stability for 600 cycles (200 h), achieving continuous hydrogen production on demand, which presents great potential for practical application
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Zn-hydrazine batteries
|
650 |
|
4 |
|a bifunctional electrocatalysts
|
650 |
|
4 |
|a decoupled electrochemical hydrazine splitting
|
650 |
|
4 |
|a separate hydrogen generation
|
700 |
1 |
|
|a Shi, Qingmei
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Lin, Jing
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Chai, Erchong
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhang, Xiang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Liu, Zhenli
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Jiao, Lei
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wang, Yaobing
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 34(2022), 51 vom: 20. Dez., Seite e2207747
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:34
|g year:2022
|g number:51
|g day:20
|g month:12
|g pages:e2207747
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202207747
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 34
|j 2022
|e 51
|b 20
|c 12
|h e2207747
|