Rapid Immobilization of Silver Nanoparticles via Amino-quinone Coatings Enables Surface-Enhanced Raman Scattering Detection
Immobilization of metal nanoparticles (NPs) on flexible substrates for surface-enhanced Raman scattering (SERS) has received great attention. Anchoring NPs on substrates generally involves the process of surface modification, thanks to its simple, universal, and nondestructive features. 2-Hydroxy-1,...
Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1992. - 38(2022), 40 vom: 11. Okt., Seite 12207-12216 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2022
|
Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't Phytochemicals Polyamines Silver 3M4G523W1G Polyethyleneimine 9002-98-6 |
Zusammenfassung: | Immobilization of metal nanoparticles (NPs) on flexible substrates for surface-enhanced Raman scattering (SERS) has received great attention. Anchoring NPs on substrates generally involves the process of surface modification, thanks to its simple, universal, and nondestructive features. 2-Hydroxy-1,4-naphthoquinone (HNQ), a plant-derived compound used to dye hairs and nails, may interact with polyamine or metal ions to form a surface coating. Here, we report the formation of amino-quinone coatings via the co-deposition of HNQ and polyethyleneimine, which provides a functionalized platform to rapidly immobilize Ag NPs on substrates such as a poly(dimethylsiloxane) (PDMS) film to fabricate Ag-PDMS substrates for SERS detection. The detection concentrations are down to 10-8 M for rhodamine 6G. This work expands the system of surface co-deposition and further provides a facile route to prepare a highly efficient SERS substrate |
---|---|
Beschreibung: | Date Completed 12.10.2022 Date Revised 13.10.2022 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1520-5827 |
DOI: | 10.1021/acs.langmuir.2c01836 |