Rapid Immobilization of Silver Nanoparticles via Amino-quinone Coatings Enables Surface-Enhanced Raman Scattering Detection

Immobilization of metal nanoparticles (NPs) on flexible substrates for surface-enhanced Raman scattering (SERS) has received great attention. Anchoring NPs on substrates generally involves the process of surface modification, thanks to its simple, universal, and nondestructive features. 2-Hydroxy-1,...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 38(2022), 40 vom: 11. Okt., Seite 12207-12216
1. Verfasser: Gao, Tian (VerfasserIn)
Weitere Verfasser: Zhou, Di, Xu, Zhi-Kang, Wan, Ling-Shu
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Phytochemicals Polyamines Silver 3M4G523W1G Polyethyleneimine 9002-98-6
Beschreibung
Zusammenfassung:Immobilization of metal nanoparticles (NPs) on flexible substrates for surface-enhanced Raman scattering (SERS) has received great attention. Anchoring NPs on substrates generally involves the process of surface modification, thanks to its simple, universal, and nondestructive features. 2-Hydroxy-1,4-naphthoquinone (HNQ), a plant-derived compound used to dye hairs and nails, may interact with polyamine or metal ions to form a surface coating. Here, we report the formation of amino-quinone coatings via the co-deposition of HNQ and polyethyleneimine, which provides a functionalized platform to rapidly immobilize Ag NPs on substrates such as a poly(dimethylsiloxane) (PDMS) film to fabricate Ag-PDMS substrates for SERS detection. The detection concentrations are down to 10-8 M for rhodamine 6G. This work expands the system of surface co-deposition and further provides a facile route to prepare a highly efficient SERS substrate
Beschreibung:Date Completed 12.10.2022
Date Revised 13.10.2022
published: Print-Electronic
Citation Status MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.2c01836