Photosynthetic carbon and nitrogen metabolism of Camellia oleifera Abel during acclimation to low light conditions

Copyright © 2022 Elsevier GmbH. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Journal of plant physiology. - 1979. - 278(2022) vom: 11. Nov., Seite 153814
1. Verfasser: Wu, Yang (VerfasserIn)
Weitere Verfasser: Ma, Lin, Zhang, Lisha, Zhang, Yan, Zhou, Huiwen, Wang, Yongjun, Liu, Yanan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Journal of plant physiology
Schlagworte:Journal Article Leaf nitrogen Metabolome Photosynthesis Photosynthetic nitrogen use efficiency Storage nitrogen Transcriptome Amino Acids Photosystem II Protein Complex Tea mehr... Chlorophyll 1406-65-1 Carbon 7440-44-0 Starch 9005-25-8 Arginine 94ZLA3W45F Ribulose-Bisphosphate Carboxylase EC 4.1.1.39 Nitrogen N762921K75
LEADER 01000naa a22002652 4500
001 NLM346949114
003 DE-627
005 20231226032652.0
007 cr uuu---uuuuu
008 231226s2022 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.jplph.2022.153814  |2 doi 
028 5 2 |a pubmed24n1156.xml 
035 |a (DE-627)NLM346949114 
035 |a (NLM)36179398 
035 |a (PII)S0176-1617(22)00200-0 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wu, Yang  |e verfasserin  |4 aut 
245 1 0 |a Photosynthetic carbon and nitrogen metabolism of Camellia oleifera Abel during acclimation to low light conditions 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 19.10.2022 
500 |a Date Revised 19.10.2022 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Copyright © 2022 Elsevier GmbH. All rights reserved. 
520 |a Tea-oil tree (Camellia oleifera Abel) is an important woody oil crop with high economic value. However, it has low photosynthetic production considering the low light intensity of its growth environment. To understand the acclimation mechanism of tea-oil trees to low light conditions, three light intensity treatments were conducted: high light (450-500 μmol. m-2. s-1), medium light (180-200 μmol. m-2. s-1), and low light (45-50 μmol. m-2. s-1). The carbon (C) and nitrogen (N) metabolism network were constructed by investigating the leaf anatomy, photosynthetic characteristics, N partitioning, transcriptome and metabolome. Results demonstrated that a larger proportion light energy was used for photochemical reactions in an environment with lower light intensity, which resulted in an increase in photosystem II photochemical efficiency and instantaneous light use efficiency (LUE) at the leaf level. As the light intensity increased, decreased electron transfer and carboxylation efficiencies, photorespiration and dark respiration rates, LUE at plant level, and N use efficiency (PNUE) were observed. Leaves trended to harvest more light using higher expression levels of light-harvesting protein genes, higher chlorophyll content, more granum and more tightly stacked granum lamella under lower light intensity. At transcriptional and metabolic levels, the TCA cycle, and the synthesis of starch and saccharides were weakened as light intensity decreased, while the Calvin cycle did not show the regularity between different treatments. Less N was distributed in Rubisco, respiration, and cell wall proteins as light decreased. Storage N was prominently accumulated in forms of amino acids (especially L-arginine) and amino acid derivatives as under medium and low light environments, to make up for C deficiency. Therefore, tea-oil trees actively improve light-harvesting capacity and enlarges the storage N pool to adapt to a low light environment, at the cost of a decrease of photosynthetic C assimilation and PNUE 
650 4 |a Journal Article 
650 4 |a Leaf nitrogen 
650 4 |a Metabolome 
650 4 |a Photosynthesis 
650 4 |a Photosynthetic nitrogen use efficiency 
650 4 |a Storage nitrogen 
650 4 |a Transcriptome 
650 7 |a Amino Acids  |2 NLM 
650 7 |a Photosystem II Protein Complex  |2 NLM 
650 7 |a Tea  |2 NLM 
650 7 |a Chlorophyll  |2 NLM 
650 7 |a 1406-65-1  |2 NLM 
650 7 |a Carbon  |2 NLM 
650 7 |a 7440-44-0  |2 NLM 
650 7 |a Starch  |2 NLM 
650 7 |a 9005-25-8  |2 NLM 
650 7 |a Arginine  |2 NLM 
650 7 |a 94ZLA3W45F  |2 NLM 
650 7 |a Ribulose-Bisphosphate Carboxylase  |2 NLM 
650 7 |a EC 4.1.1.39  |2 NLM 
650 7 |a Nitrogen  |2 NLM 
650 7 |a N762921K75  |2 NLM 
700 1 |a Ma, Lin  |e verfasserin  |4 aut 
700 1 |a Zhang, Lisha  |e verfasserin  |4 aut 
700 1 |a Zhang, Yan  |e verfasserin  |4 aut 
700 1 |a Zhou, Huiwen  |e verfasserin  |4 aut 
700 1 |a Wang, Yongjun  |e verfasserin  |4 aut 
700 1 |a Liu, Yanan  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of plant physiology  |d 1979  |g 278(2022) vom: 11. Nov., Seite 153814  |w (DE-627)NLM098174622  |x 1618-1328  |7 nnns 
773 1 8 |g volume:278  |g year:2022  |g day:11  |g month:11  |g pages:153814 
856 4 0 |u http://dx.doi.org/10.1016/j.jplph.2022.153814  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 278  |j 2022  |b 11  |c 11  |h 153814