Tac-Trainer : A Visual Analytics System for IoT-based Racket Sports Training

Conventional racket sports training highly relies on coaches' knowledge and experience, leading to biases in the guidance. To solve this problem, smart wearable devices based on Internet of Things technology (IoT) have been extensively investigated to support data-driven training. Considerable...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 29(2023), 1 vom: 13. Jan., Seite 951-961
1. Verfasser: Wang, Jiachen (VerfasserIn)
Weitere Verfasser: Ma, Ji, Hu, Kangping, Zhou, Zheng, Zhang, Hui, Xie, Xiao, Wu, Yingcai
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM346945259
003 DE-627
005 20250303215842.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2022.3209352  |2 doi 
028 5 2 |a pubmed25n1156.xml 
035 |a (DE-627)NLM346945259 
035 |a (NLM)36179004 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wang, Jiachen  |e verfasserin  |4 aut 
245 1 0 |a Tac-Trainer  |b A Visual Analytics System for IoT-based Racket Sports Training 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 05.04.2023 
500 |a Date Revised 05.04.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Conventional racket sports training highly relies on coaches' knowledge and experience, leading to biases in the guidance. To solve this problem, smart wearable devices based on Internet of Things technology (IoT) have been extensively investigated to support data-driven training. Considerable studies introduced methods to extract valuable information from the sensor data collected by IoT devices. However, the information cannot provide actionable insights for coaches due to the large data volume and high data dimensions. We proposed an IoT + VA framework, Tac-Trainer, to integrate the sensor data, the information, and coaches' knowledge to facilitate racket sports training. Tac-Trainer consists of four components: device configuration, data interpretation, training optimization, and result visualization. These components collect trainees' kinematic data through IoT devices, transform the data into attributes and indicators, generate training suggestions, and provide an interactive visualization interface for exploration, respectively. We further discuss new research opportunities and challenges inspired by our work from two perspectives, VA for IoT and IoT for VA 
650 4 |a Journal Article 
700 1 |a Ma, Ji  |e verfasserin  |4 aut 
700 1 |a Hu, Kangping  |e verfasserin  |4 aut 
700 1 |a Zhou, Zheng  |e verfasserin  |4 aut 
700 1 |a Zhang, Hui  |e verfasserin  |4 aut 
700 1 |a Xie, Xiao  |e verfasserin  |4 aut 
700 1 |a Wu, Yingcai  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 29(2023), 1 vom: 13. Jan., Seite 951-961  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnas 
773 1 8 |g volume:29  |g year:2023  |g number:1  |g day:13  |g month:01  |g pages:951-961 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2022.3209352  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 29  |j 2023  |e 1  |b 13  |c 01  |h 951-961