Small-Object Sensitive Segmentation Using Across Feature Map Attention

Semantic segmentation is an important step in understanding the scene for many practical applications such as autonomous driving. Although Deep Convolutional Neural Networks-based methods have significantly improved segmentation accuracy, small/thin objects remain challenging to segment due to convo...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 5 vom: 13. Mai, Seite 6289-6306
Auteur principal: Sang, Shengtian (Auteur)
Autres auteurs: Zhou, Yuyin, Islam, Md Tauhidul, Xing, Lei
Format: Article en ligne
Langue:English
Publié: 2023
Accès à la collection:IEEE transactions on pattern analysis and machine intelligence
Sujets:Journal Article
Description
Résumé:Semantic segmentation is an important step in understanding the scene for many practical applications such as autonomous driving. Although Deep Convolutional Neural Networks-based methods have significantly improved segmentation accuracy, small/thin objects remain challenging to segment due to convolutional and pooling operations that result in information loss, especially for small objects. This article presents a novel attention-based method called Across Feature Map Attention (AFMA) to address this challenge. It quantifies the inner-relationship between small and large objects belonging to the same category by utilizing the different feature levels of the original image. The AFMA could compensate for the loss of high-level feature information of small objects and improve the small/thin object segmentation. Our method can be used as an efficient plug-in for a wide range of existing architectures and produces much more interpretable feature representation than former studies. Extensive experiments on eight widely used segmentation methods and other existing small-object segmentation models on CamVid and Cityscapes demonstrate that our method substantially and consistently improves the segmentation of small/thin objects
Description:Date Completed 10.04.2023
Date Revised 23.10.2024
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1939-3539
DOI:10.1109/TPAMI.2022.3211171