Development and Evaluation of Two Approaches of Visual Sensitivity Analysis to Support Epidemiological Modeling

Computational modeling is a commonly used technology in many scientific disciplines and has played a noticeable role in combating the COVID-19 pandemic. Modeling scientists conduct sensitivity analysis frequently to observe and monitor the behavior of a model during its development and deployment. T...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 29(2023), 1 vom: 01. Jan., Seite 1255-1265
1. Verfasser: Rydow, Erik (VerfasserIn)
Weitere Verfasser: Borgo, Rita, Fang, Hui, Torsney-Weir, Thomas, Swallow, Ben, Porphyre, Thibaud, Turkay, Cagatay, Chen, Min
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM346893232
003 DE-627
005 20231226032533.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2022.3209464  |2 doi 
028 5 2 |a pubmed24n1156.xml 
035 |a (DE-627)NLM346893232 
035 |a (NLM)36173770 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Rydow, Erik  |e verfasserin  |4 aut 
245 1 0 |a Development and Evaluation of Two Approaches of Visual Sensitivity Analysis to Support Epidemiological Modeling 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 06.04.2023 
500 |a Date Revised 03.05.2023 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Computational modeling is a commonly used technology in many scientific disciplines and has played a noticeable role in combating the COVID-19 pandemic. Modeling scientists conduct sensitivity analysis frequently to observe and monitor the behavior of a model during its development and deployment. The traditional algorithmic ranking of sensitivity of different parameters usually does not provide modeling scientists with sufficient information to understand the interactions between different parameters and model outputs, while modeling scientists need to observe a large number of model runs in order to gain actionable information for parameter optimization. To address the above challenge, we developed and compared two visual analytics approaches, namely: algorithm-centric and visualization-assisted, and visualization-centric and algorithm-assisted. We evaluated the two approaches based on a structured analysis of different tasks in visual sensitivity analysis as well as the feedback of domain experts. While the work was carried out in the context of epidemiological modeling, the two approaches developed in this work are directly applicable to a variety of modeling processes featuring time series outputs, and can be extended to work with models with other types of outputs 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Borgo, Rita  |e verfasserin  |4 aut 
700 1 |a Fang, Hui  |e verfasserin  |4 aut 
700 1 |a Torsney-Weir, Thomas  |e verfasserin  |4 aut 
700 1 |a Swallow, Ben  |e verfasserin  |4 aut 
700 1 |a Porphyre, Thibaud  |e verfasserin  |4 aut 
700 1 |a Turkay, Cagatay  |e verfasserin  |4 aut 
700 1 |a Chen, Min  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 29(2023), 1 vom: 01. Jan., Seite 1255-1265  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:29  |g year:2023  |g number:1  |g day:01  |g month:01  |g pages:1255-1265 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2022.3209464  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 29  |j 2023  |e 1  |b 01  |c 01  |h 1255-1265