|
|
|
|
LEADER |
01000caa a22002652c 4500 |
001 |
NLM34687517X |
003 |
DE-627 |
005 |
20250303214824.0 |
007 |
cr uuu---uuuuu |
008 |
231226s2022 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1016/j.jcp.2022.111585
|2 doi
|
028 |
5 |
2 |
|a pubmed25n1155.xml
|
035 |
|
|
|a (DE-627)NLM34687517X
|
035 |
|
|
|a (NLM)36171963
|
035 |
|
|
|a (PII)111585
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Garritano, James
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a On the efficient evaluation of the azimuthal Fourier components of the Green's function for Helmholtz's equation in cylindrical coordinates
|
264 |
|
1 |
|c 2022
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 08.11.2023
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a In this paper, we develop an efficient algorithm to evaluate the azimuthal Fourier components of the Green's function for the Helmholtz equation in cylindrical coordinates. A computationally efficient algorithm for this modal Green's function is essential for solvers for electromagnetic scattering from bodies of revolution (e.g., radar cross sections, antennas). Current algorithms to evaluate this modal Green's function become computationally intractable when the source and target are close or when the wavenumber is large or complex. Furthermore, most state-of-the-art methods cannot be easily parallelized. In this paper, we present an algorithm for evaluating the modal Green's function that has performance independent of both source-to-target proximity and wavenumber, and whose cost grows as O(m), where m is the Fourier mode. Our algorithm's performance is independent of whether the wavenumber is real or complex. Furthermore, our algorithm is embarrassingly parallelizable
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Axisymmetric problems
|
650 |
|
4 |
|a Electromagnetics
|
650 |
|
4 |
|a Helmholtz equation
|
650 |
|
4 |
|a Modal Green’s function
|
650 |
|
4 |
|a Potential theory
|
650 |
|
4 |
|a Volume of revolution
|
700 |
1 |
|
|a Kluger, Yuval
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Rokhlin, Vladimir
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Serkh, Kirill
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Journal of computational physics
|d 1986
|g 451(2022) vom: 15. Dez.
|w (DE-627)NLM098188844
|x 0021-9991
|7 nnas
|
773 |
1 |
8 |
|g volume:451
|g year:2022
|g day:15
|g month:12
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1016/j.jcp.2022.111585
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 451
|j 2022
|b 15
|c 12
|