Visinity : Visual Spatial Neighborhood Analysis for Multiplexed Tissue Imaging Data

New highly-multiplexed imaging technologies have enabled the study of tissues in unprecedented detail. These methods are increasingly being applied to understand how cancer cells and immune response change during tumor development, progression, and metastasis, as well as following treatment. Yet, ex...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 29(2023), 1 vom: 28. Jan., Seite 106-116
1. Verfasser: Warchol, Simon (VerfasserIn)
Weitere Verfasser: Krueger, Robert, Nirmal, Ajit Johnson, Gaglia, Giorgio, Jessup, Jared, Ritch, Cecily C, Hoffer, John, Muhlich, Jeremy, Burger, Megan L, Jacks, Tyler, Santagata, Sandro, Sorger, Peter K, Pfister, Hanspeter
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article Research Support, U.S. Gov't, Non-P.H.S. Research Support, N.I.H., Extramural
LEADER 01000naa a22002652 4500
001 NLM346859999
003 DE-627
005 20231226032448.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2022.3209378  |2 doi 
028 5 2 |a pubmed24n1156.xml 
035 |a (DE-627)NLM346859999 
035 |a (NLM)36170403 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Warchol, Simon  |e verfasserin  |4 aut 
245 1 0 |a Visinity  |b Visual Spatial Neighborhood Analysis for Multiplexed Tissue Imaging Data 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 06.04.2023 
500 |a Date Revised 03.05.2023 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a New highly-multiplexed imaging technologies have enabled the study of tissues in unprecedented detail. These methods are increasingly being applied to understand how cancer cells and immune response change during tumor development, progression, and metastasis, as well as following treatment. Yet, existing analysis approaches focus on investigating small tissue samples on a per-cell basis, not taking into account the spatial proximity of cells, which indicates cell-cell interaction and specific biological processes in the larger cancer microenvironment. We present Visinity, a scalable visual analytics system to analyze cell interaction patterns across cohorts of whole-slide multiplexed tissue images. Our approach is based on a fast regional neighborhood computation, leveraging unsupervised learning to quantify, compare, and group cells by their surrounding cellular neighborhood. These neighborhoods can be visually analyzed in an exploratory and confirmatory workflow. Users can explore spatial patterns present across tissues through a scalable image viewer and coordinated views highlighting the neighborhood composition and spatial arrangements of cells. To verify or refine existing hypotheses, users can query for specific patterns to determine their presence and statistical significance. Findings can be interactively annotated, ranked, and compared in the form of small multiples. In two case studies with biomedical experts, we demonstrate that Visinity can identify common biological processes within a human tonsil and uncover novel white-blood cell networks and immune-tumor interactions 
650 4 |a Journal Article 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
650 4 |a Research Support, N.I.H., Extramural 
700 1 |a Krueger, Robert  |e verfasserin  |4 aut 
700 1 |a Nirmal, Ajit Johnson  |e verfasserin  |4 aut 
700 1 |a Gaglia, Giorgio  |e verfasserin  |4 aut 
700 1 |a Jessup, Jared  |e verfasserin  |4 aut 
700 1 |a Ritch, Cecily C  |e verfasserin  |4 aut 
700 1 |a Hoffer, John  |e verfasserin  |4 aut 
700 1 |a Muhlich, Jeremy  |e verfasserin  |4 aut 
700 1 |a Burger, Megan L  |e verfasserin  |4 aut 
700 1 |a Jacks, Tyler  |e verfasserin  |4 aut 
700 1 |a Santagata, Sandro  |e verfasserin  |4 aut 
700 1 |a Sorger, Peter K  |e verfasserin  |4 aut 
700 1 |a Pfister, Hanspeter  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 29(2023), 1 vom: 28. Jan., Seite 106-116  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:29  |g year:2023  |g number:1  |g day:28  |g month:01  |g pages:106-116 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2022.3209378  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 29  |j 2023  |e 1  |b 28  |c 01  |h 106-116