DPVisCreator : Incorporating Pattern Constraints to Privacy-preserving Visualizations via Differential Privacy

Data privacy is an essential issue in publishing data visualizations. However, it is challenging to represent multiple data patterns in privacy-preserving visualizations. The prior approaches target specific chart types or perform an anonymization model uniformly without considering the importance o...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 29(2023), 1 vom: 27. Jan., Seite 809-819
1. Verfasser: Zhou, Jiehui (VerfasserIn)
Weitere Verfasser: Wang, Xumeng, Wong, Jason K, Wang, Huanliang, Wang, Zhongwei, Yang, Xiaoyu, Yan, Xiaoran, Feng, Haozhe, Qu, Huamin, Ying, Haochao, Chen, Wei
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM346821827
003 DE-627
005 20250303214038.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2022.3209391  |2 doi 
028 5 2 |a pubmed25n1155.xml 
035 |a (DE-627)NLM346821827 
035 |a (NLM)36166552 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhou, Jiehui  |e verfasserin  |4 aut 
245 1 0 |a DPVisCreator  |b Incorporating Pattern Constraints to Privacy-preserving Visualizations via Differential Privacy 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 05.04.2023 
500 |a Date Revised 05.04.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Data privacy is an essential issue in publishing data visualizations. However, it is challenging to represent multiple data patterns in privacy-preserving visualizations. The prior approaches target specific chart types or perform an anonymization model uniformly without considering the importance of data patterns in visualizations. In this paper, we propose a visual analytics approach that facilitates data custodians to generate multiple private charts while maintaining user-preferred patterns. To this end, we introduce pattern constraints to model users' preferences over data patterns in the dataset and incorporate them into the proposed Bayesian network-based Differential Privacy (DP) model PriVis. A prototype system, DPVisCreator, is developed to assist data custodians in implementing our approach. The effectiveness of our approach is demonstrated with quantitative evaluation of pattern utility under the different levels of privacy protection, case studies, and semi-structured expert interviews 
650 4 |a Journal Article 
700 1 |a Wang, Xumeng  |e verfasserin  |4 aut 
700 1 |a Wong, Jason K  |e verfasserin  |4 aut 
700 1 |a Wang, Huanliang  |e verfasserin  |4 aut 
700 1 |a Wang, Zhongwei  |e verfasserin  |4 aut 
700 1 |a Yang, Xiaoyu  |e verfasserin  |4 aut 
700 1 |a Yan, Xiaoran  |e verfasserin  |4 aut 
700 1 |a Feng, Haozhe  |e verfasserin  |4 aut 
700 1 |a Qu, Huamin  |e verfasserin  |4 aut 
700 1 |a Ying, Haochao  |e verfasserin  |4 aut 
700 1 |a Chen, Wei  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 29(2023), 1 vom: 27. Jan., Seite 809-819  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnas 
773 1 8 |g volume:29  |g year:2023  |g number:1  |g day:27  |g month:01  |g pages:809-819 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2022.3209391  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 29  |j 2023  |e 1  |b 27  |c 01  |h 809-819