Seeing What You Believe or Believing What You See? Belief Biases Correlation Estimation

When an analyst or scientist has a belief about how the world works, their thinking can be biased in favor of that belief. Therefore, one bedrock principle of science is to minimize that bias by testing the predictions of one's belief against objective data. But interpreting visualized data is...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 29(2023), 1 vom: 27. Jan., Seite 493-503
1. Verfasser: Xiong, Cindy (VerfasserIn)
Weitere Verfasser: Stokes, Chase, Kim, Yea-Seul, Franconeri, Steven
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM346821789
003 DE-627
005 20250303214038.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2022.3209405  |2 doi 
028 5 2 |a pubmed25n1155.xml 
035 |a (DE-627)NLM346821789 
035 |a (NLM)36166548 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Xiong, Cindy  |e verfasserin  |4 aut 
245 1 0 |a Seeing What You Believe or Believing What You See? Belief Biases Correlation Estimation 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 05.04.2023 
500 |a Date Revised 05.04.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a When an analyst or scientist has a belief about how the world works, their thinking can be biased in favor of that belief. Therefore, one bedrock principle of science is to minimize that bias by testing the predictions of one's belief against objective data. But interpreting visualized data is a complex perceptual and cognitive process. Through two crowdsourced experiments, we demonstrate that supposedly objective assessments of the strength of a correlational relationship can be influenced by how strongly a viewer believes in the existence of that relationship. Participants viewed scatterplots depicting a relationship between meaningful variable pairs (e.g., number of environmental regulations and air quality) and estimated their correlations. They also estimated the correlation of the same scatterplots labeled instead with generic 'X' and 'Y' axes. In a separate section, they also reported how strongly they believed there to be a correlation between the meaningful variable pairs. Participants estimated correlations more accurately when they viewed scatterplots labeled with generic axes compared to scatterplots labeled with meaningful variable pairs. Furthermore, when viewers believed that two variables should have a strong relationship, they overestimated correlations between those variables by an r-value of about 0.1. When they believed that the variables should be unrelated, they underestimated the correlations by an r-value of about 0.1. While data visualizations are typically thought to present objective truths to the viewer, these results suggest that existing personal beliefs can bias even objective statistical values people extract from data 
650 4 |a Journal Article 
700 1 |a Stokes, Chase  |e verfasserin  |4 aut 
700 1 |a Kim, Yea-Seul  |e verfasserin  |4 aut 
700 1 |a Franconeri, Steven  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 29(2023), 1 vom: 27. Jan., Seite 493-503  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnas 
773 1 8 |g volume:29  |g year:2023  |g number:1  |g day:27  |g month:01  |g pages:493-503 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2022.3209405  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 29  |j 2023  |e 1  |b 27  |c 01  |h 493-503