Generating Hypergraph-Based High-Order Representations of Whole-Slide Histopathological Images for Survival Prediction

Patient survival prediction based on gigapixel whole-slide histopathological images (WSIs) has become increasingly prevalent in recent years. A key challenge of this task is achieving an informative survival-specific global representation from those WSIs with highly complicated data correlation. Thi...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 5 vom: 26. Mai, Seite 5800-5815
1. Verfasser: Di, Donglin (VerfasserIn)
Weitere Verfasser: Zou, Changqing, Feng, Yifan, Zhou, Haiyan, Ji, Rongrong, Dai, Qionghai, Gao, Yue
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM34671737X
003 DE-627
005 20231226032124.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2022.3209652  |2 doi 
028 5 2 |a pubmed24n1155.xml 
035 |a (DE-627)NLM34671737X 
035 |a (NLM)36155478 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Di, Donglin  |e verfasserin  |4 aut 
245 1 0 |a Generating Hypergraph-Based High-Order Representations of Whole-Slide Histopathological Images for Survival Prediction 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 11.04.2023 
500 |a Date Revised 05.05.2023 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Patient survival prediction based on gigapixel whole-slide histopathological images (WSIs) has become increasingly prevalent in recent years. A key challenge of this task is achieving an informative survival-specific global representation from those WSIs with highly complicated data correlation. This article proposes a multi-hypergraph based learning framework, called "HGSurvNet," to tackle this challenge. HGSurvNet achieves an effective high-order global representation of WSIs via multilateral correlation modeling in multiple spaces and a general hypergraph convolution network. It has the ability to alleviate over-fitting issues caused by the lack of training data by using a new convolution structure called hypergraph max-mask convolution. Extensive validation experiments were conducted on three widely-used carcinoma datasets: Lung Squamous Cell Carcinoma (LUSC), Glioblastoma Multiforme (GBM), and National Lung Screening Trial (NLST). Quantitative analysis demonstrated that the proposed method consistently outperforms state-of-the-art methods, coupled with the Bayesian Concordance Readjust loss. We also demonstrate the individual effectiveness of each module of the proposed framework and its application potential for pathology diagnosis and reporting empowered by its interpretability potential 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Zou, Changqing  |e verfasserin  |4 aut 
700 1 |a Feng, Yifan  |e verfasserin  |4 aut 
700 1 |a Zhou, Haiyan  |e verfasserin  |4 aut 
700 1 |a Ji, Rongrong  |e verfasserin  |4 aut 
700 1 |a Dai, Qionghai  |e verfasserin  |4 aut 
700 1 |a Gao, Yue  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 45(2023), 5 vom: 26. Mai, Seite 5800-5815  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:45  |g year:2023  |g number:5  |g day:26  |g month:05  |g pages:5800-5815 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2022.3209652  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 45  |j 2023  |e 5  |b 26  |c 05  |h 5800-5815