Weakly-Supervised Salient Object Detection on Light Fields

Most existing salient object detection (SOD) methods are designed for RGB images and do not take advantage of the abundant information provided by light fields. Hence, they may fail to detect salient objects of complex structures and delineate their boundaries. Although some methods have explored mu...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 31(2022) vom: 23., Seite 6295-6305
1. Verfasser: Liang, Zijian (VerfasserIn)
Weitere Verfasser: Wang, Pengjie, Xu, Ke, Zhang, Pingping, Lau, Rynson W H
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM346663326
003 DE-627
005 20231226032006.0
007 cr uuu---uuuuu
008 231226s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2022.3207605  |2 doi 
028 5 2 |a pubmed24n1155.xml 
035 |a (DE-627)NLM346663326 
035 |a (NLM)36149997 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Liang, Zijian  |e verfasserin  |4 aut 
245 1 0 |a Weakly-Supervised Salient Object Detection on Light Fields 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 11.10.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Most existing salient object detection (SOD) methods are designed for RGB images and do not take advantage of the abundant information provided by light fields. Hence, they may fail to detect salient objects of complex structures and delineate their boundaries. Although some methods have explored multi-view information of light field images for saliency detection, they require tedious pixel-level manual annotations of ground truths. In this paper, we propose a novel weakly-supervised learning framework for salient object detection on light field images based on bounding box annotations. Our method has two major novelties. First, given an input light field image and a bounding-box annotation indicating the salient object, we propose a ground truth label hallucination method to generate a pixel-level pseudo saliency map, to avoid heavy cost of pixel-level annotations. This method generates high quality pseudo ground truth saliency maps to help supervise the training, by exploiting information obtained from the light field (including depths and RGB images). Second, to exploit the multi-view nature of the light field data in learning, we propose a fusion attention module to calibrate the spatial and channel-wise light field representations. It learns to focus on informative features and suppress redundant information from the multi-view inputs. Based on these two novelties, we are able to train a new salient object detector with two branches in a weakly-supervised manner. While the RGB branch focuses on modeling the color contrast in the all-in-focus image for locating the salient objects, the Focal branch exploits the depth and the background spatial redundancy of focal slices for eliminating background distractions. Extensive experiments show that our method outperforms existing weakly-supervised methods and most fully supervised methods 
650 4 |a Journal Article 
700 1 |a Wang, Pengjie  |e verfasserin  |4 aut 
700 1 |a Xu, Ke  |e verfasserin  |4 aut 
700 1 |a Zhang, Pingping  |e verfasserin  |4 aut 
700 1 |a Lau, Rynson W H  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 31(2022) vom: 23., Seite 6295-6305  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:31  |g year:2022  |g day:23  |g pages:6295-6305 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2022.3207605  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 31  |j 2022  |b 23  |h 6295-6305