Conditional Feature Embedding by Visual Clue Correspondence Graph for Person Re-Identification

Although Person Re-Identification has made impressive progress, difficult cases like occlusion, change of view-point, and similar clothing still bring great challenges. In order to tackle these challenges, extracting discriminative feature representation is crucial. Most of the existing methods focu...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 31(2022) vom: 15., Seite 6188-6199
1. Verfasser: Yu, Fufu (VerfasserIn)
Weitere Verfasser: Jiang, Xinyang, Gong, Yifei, Zheng, Wei-Shi, Zheng, Feng, Sun, Xing
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Although Person Re-Identification has made impressive progress, difficult cases like occlusion, change of view-point, and similar clothing still bring great challenges. In order to tackle these challenges, extracting discriminative feature representation is crucial. Most of the existing methods focus on extracting ReID features from individual images separately. However, when matching two images, we propose that the ReID features of a query image should be dynamically adjusted based on the contextual information from the gallery image it matches. We call this type of ReID features conditional feature embedding. In this paper, we propose a novel ReID framework that extracts conditional feature embedding based on the aligned visual clues between image pairs, called Clue Alignment based Conditional Embedding (CACE-Net). CACE-Net applies an attention module to build a detailed correspondence graph between crucial visual clues in image pairs and uses discrepancy-based GCN to embed the obtained complex correspondence information into the conditional features. The experiments show that CACE-Net achieves state-of-the-art performance on three public datasets
Beschreibung:Date Completed 30.09.2022
Date Revised 30.09.2022
published: Print-Electronic
Citation Status MEDLINE
ISSN:1941-0042
DOI:10.1109/TIP.2022.3206617