Stylized Adversarial Defense

Deep Convolution Neural Networks (CNNs) can easily be fooled by subtle, imperceptible changes to the input images. To address this vulnerability, adversarial training creates perturbation patterns and includes them in the training set to robustify the model. In contrast to existing adversarial train...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 5 vom: 19. Mai, Seite 6403-6414
1. Verfasser: Naseer, Muzammal (VerfasserIn)
Weitere Verfasser: Khan, Salman, Hayat, Munawar, Khan, Fahad Shahbaz, Porikli, Fatih
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM346386535
003 DE-627
005 20231226031322.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2022.3207917  |2 doi 
028 5 2 |a pubmed24n1154.xml 
035 |a (DE-627)NLM346386535 
035 |a (NLM)36121953 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Naseer, Muzammal  |e verfasserin  |4 aut 
245 1 0 |a Stylized Adversarial Defense 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 10.04.2023 
500 |a Date Revised 10.04.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Deep Convolution Neural Networks (CNNs) can easily be fooled by subtle, imperceptible changes to the input images. To address this vulnerability, adversarial training creates perturbation patterns and includes them in the training set to robustify the model. In contrast to existing adversarial training methods that only use class-boundary information (e.g., using a cross-entropy loss), we propose to exploit additional information from the feature space to craft stronger adversaries that are in turn used to learn a robust model. Specifically, we use the style and content information of the target sample from another class, alongside its class-boundary information to create adversarial perturbations. We apply our proposed multi-task objective in a deeply supervised manner, extracting multi-scale feature knowledge to create maximally separating adversaries. Subsequently, we propose a max-margin adversarial training approach that minimizes the distance between source image and its adversary and maximizes the distance between the adversary and the target image. Our adversarial training approach demonstrates strong robustness compared to state-of-the-art defenses, generalizes well to naturally occurring corruptions and data distributional shifts, and retains the model's accuracy on clean examples 
650 4 |a Journal Article 
700 1 |a Khan, Salman  |e verfasserin  |4 aut 
700 1 |a Hayat, Munawar  |e verfasserin  |4 aut 
700 1 |a Khan, Fahad Shahbaz  |e verfasserin  |4 aut 
700 1 |a Porikli, Fatih  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 45(2023), 5 vom: 19. Mai, Seite 6403-6414  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:45  |g year:2023  |g number:5  |g day:19  |g month:05  |g pages:6403-6414 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2022.3207917  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 45  |j 2023  |e 5  |b 19  |c 05  |h 6403-6414