|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM346375088 |
003 |
DE-627 |
005 |
20231226031305.0 |
007 |
cr uuu---uuuuu |
008 |
231226s2022 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202206364
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1154.xml
|
035 |
|
|
|a (DE-627)NLM346375088
|
035 |
|
|
|a (NLM)36120802
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Chen, Cheng
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Janus Helical Ribbon Structure of Ordered Nanowire Films for Flexible Solar Thermoelectric Devices
|
264 |
|
1 |
|c 2022
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 04.11.2022
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2022 Wiley-VCH GmbH.
|
520 |
|
|
|a Solar thermoelectric devices play a significant role in addressing the problem of global warming, owing to their unique features of converting both waste heat and solar energy directly into electricity. Herein, a flexible 3D Janus helical ribbon architecture is designed, starting from well-aligned tellurium (Te) nanowire film, using an in situ redox process reacting with Ag+ and Cu2+ resulting in n-type, p-type, and photothermal sides in one film. Remarkably, the device shows all-day electricity generation and large temperature gradient by coupling the cold side with a passive radiative cooling technique and the hot side with a selective solar absorption technique, showing a temperature gradient of 29.5 K, which is much higher than previously reported devices under a low solar radiation of only 614 W m-2 . Especially, the device can still generate electricity even at night. The present strategy offers a new way for heat management by efficiently utilizing solar energy and the cold of the universe
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Janus helical ribbon structures
|
650 |
|
4 |
|a ordered nanowire films
|
650 |
|
4 |
|a passive radiative cooling
|
650 |
|
4 |
|a selective solar absorption
|
650 |
|
4 |
|a solar thermoelectric devices
|
700 |
1 |
|
|a Zhao, Bin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wang, Rui
|e verfasserin
|4 aut
|
700 |
1 |
|
|a He, Zhen
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wang, Jin-Long
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Hu, Mingke
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Li, Xin-Lin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Pei, Gang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Liu, Jian-Wei
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Yu, Shu-Hong
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 34(2022), 44 vom: 01. Nov., Seite e2206364
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:34
|g year:2022
|g number:44
|g day:01
|g month:11
|g pages:e2206364
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202206364
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 34
|j 2022
|e 44
|b 01
|c 11
|h e2206364
|