Stereo Confidence Estimation via Locally Adaptive Fusion and Knowledge Distillation

Stereo confidence estimation aims to estimate the reliability of the estimated disparity by stereo matching. Different from the previous methods that exploit the limited input modality, we present a novel method that estimates confidence map of an initial disparity by making full use of tri-modal in...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 5 vom: 16. Mai, Seite 6372-6385
1. Verfasser: Kim, Sunok (VerfasserIn)
Weitere Verfasser: Kim, Seungryong, Min, Dongbo, Frossard, Pascal, Sohn, Kwanghoon
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM346292999
003 DE-627
005 20231226031059.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2022.3207286  |2 doi 
028 5 2 |a pubmed24n1154.xml 
035 |a (DE-627)NLM346292999 
035 |a (NLM)36112555 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Kim, Sunok  |e verfasserin  |4 aut 
245 1 0 |a Stereo Confidence Estimation via Locally Adaptive Fusion and Knowledge Distillation 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 10.04.2023 
500 |a Date Revised 11.04.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Stereo confidence estimation aims to estimate the reliability of the estimated disparity by stereo matching. Different from the previous methods that exploit the limited input modality, we present a novel method that estimates confidence map of an initial disparity by making full use of tri-modal input, including matching cost, disparity, and color image through deep networks. The proposed network, termed as Locally Adaptive Fusion Networks (LAF-Net), learns locally-varying attention and scale maps to fuse the tri-modal confidence features. Moreover, we propose a knowledge distillation framework to learn more compact confidence estimation networks as student networks. By transferring the knowledge from LAF-Net as teacher networks, the student networks that solely take as input a disparity can achieve comparable performance. To transfer more informative knowledge, we also propose a module to learn the locally-varying temperature in a softmax function. We further extend this framework to a multiview scenario. Experimental results show that LAF-Net and its variations outperform the state-of-the-art stereo confidence methods on various benchmarks 
650 4 |a Journal Article 
700 1 |a Kim, Seungryong  |e verfasserin  |4 aut 
700 1 |a Min, Dongbo  |e verfasserin  |4 aut 
700 1 |a Frossard, Pascal  |e verfasserin  |4 aut 
700 1 |a Sohn, Kwanghoon  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 45(2023), 5 vom: 16. Mai, Seite 6372-6385  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:45  |g year:2023  |g number:5  |g day:16  |g month:05  |g pages:6372-6385 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2022.3207286  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 45  |j 2023  |e 5  |b 16  |c 05  |h 6372-6385