PointRas : Uncertainty-Aware Multi-Resolution Learning for Point Cloud Segmentation

In this paper, we propose an uncertainty-aware multi-resolution learning for point cloud segmentation, named PointRas. Most existing works for point cloud segmentation design encoder networks to obtain better representation of local space in point cloud. However, few of them investigate the utilizat...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 31(2022) vom: 01., Seite 6002-6016
1. Verfasser: Zheng, Yu (VerfasserIn)
Weitere Verfasser: Xu, Xiuwei, Zhou, Jie, Lu, Jiwen
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:In this paper, we propose an uncertainty-aware multi-resolution learning for point cloud segmentation, named PointRas. Most existing works for point cloud segmentation design encoder networks to obtain better representation of local space in point cloud. However, few of them investigate the utilization of features in the lower resolutions produced by encoders and consider the contextual learning between various resolutions in decoder network. To address this, we propose to utilize the descriptive characteristic of point clouds in the lower resolutions. Taking reference to core steps of rasterization in 2D graphics where the properties of pixels in high density are interpolated from a few primitive shapes in rasterization rendering, we use the similar strategy where prediction maps in lower resolution are iteratively regressed and upsampled into higher resolutions. Moreover, to remedy the potential information deficiency of lower-resolution point cloud, we refine the predictions in each resolution under the criterion of uncertainty selection, which notably enhances the representation ability of the point cloud in lower resolutions. Our proposed PointRas module can be incorporated into the backbones of various point cloud segmentation frameworks, and brings only marginal computational cost. We evaluate the proposed method on challenging datasets including ScanNet, S3DIS, NPM3D, STPLS3D and ScanObjectNN, and consistently improve the performance in comparison with the state-of-the-art methods
Beschreibung:Date Revised 20.09.2022
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1941-0042
DOI:10.1109/TIP.2022.3205208