Thermodynamics for the Self-Assembly of Alkylated Peptides

Self-assembling peptides form aggregates with various nanostructures such as spheres, sheets, and fibers and have potential applications in nanomedicine and drug delivery. The alkylation of peptides is a promising strategy for controlling the self-assembly of peptides. In this study, we investigated...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 38(2022), 38 vom: 27. Sept., Seite 11801-11809
1. Verfasser: Sato, Ai (VerfasserIn)
Weitere Verfasser: Ikeda, Keisuke, Nakao, Hiroyuki, Nakano, Minoru
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Fatty Acids Micelles Peptides
Beschreibung
Zusammenfassung:Self-assembling peptides form aggregates with various nanostructures such as spheres, sheets, and fibers and have potential applications in nanomedicine and drug delivery. The alkylation of peptides is a promising strategy for controlling the self-assembly of peptides. In this study, we investigated the thermodynamic properties associated with the aggregation of alkyl-chain-modified self-assembling peptides. The tripeptide sequence, KYF, which has been reported to form fibrous aggregates via self-assembly, was modified with various fatty acids at the N-terminus. The fibrous morphology of the aggregates was observed by transmission electron microscopy and atomic force microscopy. Thioflavin T fluorescence and circular dichroism spectroscopy revealed the formation of β-sheet structures. The critical micelle concentration and its temperature dependence were determined to obtain the thermodynamic parameters for aggregation. The results showed that the aggregation was an entropy-driven process at low temperatures, whereas it was enthalpy-driven at high temperatures. The negative heat capacity changes for aggregation suggested that hydrophobic interactions were the major driving force for self-assembly. Other entropic and enthalpic interactions were also contributed in part to the self-assembly. We individually identified the contributions of the peptide and alkyl chain moiety to the self-assembly. These contributions can be explained by the theoretical values for the self-assembly of each component. The results of this study provide fundamental insights into the design of self-associating peptides
Beschreibung:Date Completed 28.09.2022
Date Revised 13.10.2022
published: Print-Electronic
Citation Status MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.2c02179