Thermodynamics for the Self-Assembly of Alkylated Peptides
Self-assembling peptides form aggregates with various nanostructures such as spheres, sheets, and fibers and have potential applications in nanomedicine and drug delivery. The alkylation of peptides is a promising strategy for controlling the self-assembly of peptides. In this study, we investigated...
Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1992. - 38(2022), 38 vom: 27. Sept., Seite 11801-11809 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2022
|
Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't Fatty Acids Micelles Peptides |
Zusammenfassung: | Self-assembling peptides form aggregates with various nanostructures such as spheres, sheets, and fibers and have potential applications in nanomedicine and drug delivery. The alkylation of peptides is a promising strategy for controlling the self-assembly of peptides. In this study, we investigated the thermodynamic properties associated with the aggregation of alkyl-chain-modified self-assembling peptides. The tripeptide sequence, KYF, which has been reported to form fibrous aggregates via self-assembly, was modified with various fatty acids at the N-terminus. The fibrous morphology of the aggregates was observed by transmission electron microscopy and atomic force microscopy. Thioflavin T fluorescence and circular dichroism spectroscopy revealed the formation of β-sheet structures. The critical micelle concentration and its temperature dependence were determined to obtain the thermodynamic parameters for aggregation. The results showed that the aggregation was an entropy-driven process at low temperatures, whereas it was enthalpy-driven at high temperatures. The negative heat capacity changes for aggregation suggested that hydrophobic interactions were the major driving force for self-assembly. Other entropic and enthalpic interactions were also contributed in part to the self-assembly. We individually identified the contributions of the peptide and alkyl chain moiety to the self-assembly. These contributions can be explained by the theoretical values for the self-assembly of each component. The results of this study provide fundamental insights into the design of self-associating peptides |
---|---|
Beschreibung: | Date Completed 28.09.2022 Date Revised 13.10.2022 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1520-5827 |
DOI: | 10.1021/acs.langmuir.2c02179 |