Curiosity-Driven Salient Object Detection With Fragment Attention

Recent deep learning based salient object detection methods with attention mechanisms have made great success. However, existing attention mechanisms can be generally separated into two categories. One part chooses to calculate weights indiscriminately, which yields computational redundancy. While o...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 31(2022) vom: 26., Seite 5989-6001
1. Verfasser: Wang, Zheng (VerfasserIn)
Weitere Verfasser: Wang, Pengzhi, Han, Yahong, Zhang, Xue, Sun, Meijun, Tian, Qi
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM346161002
003 DE-627
005 20231226030747.0
007 cr uuu---uuuuu
008 231226s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2022.3203605  |2 doi 
028 5 2 |a pubmed24n1153.xml 
035 |a (DE-627)NLM346161002 
035 |a (NLM)36099213 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wang, Zheng  |e verfasserin  |4 aut 
245 1 0 |a Curiosity-Driven Salient Object Detection With Fragment Attention 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 22.09.2022 
500 |a Date Revised 22.09.2022 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Recent deep learning based salient object detection methods with attention mechanisms have made great success. However, existing attention mechanisms can be generally separated into two categories. One part chooses to calculate weights indiscriminately, which yields computational redundancy. While one part focuses randomly on a small part of the images, such as hard attention, resulting in incorrectness owing to insufficiently targeted selection of a subset of tokens. To alleviate these problems, we design a Curiosity-driven Network (CNet) and a Curiosity-driven Learning Algorithm (CLA) based on fragment attention (FA) mechanism newly defined in this paper. FA imitates the process of cognition perception driven by human curiosity, and divides the degree of curiosity into three levels, i.e. curious, a little curious and not curious. These three levels correspond to five saliency degrees, including salient and non-salient, likewise salient and likewise non-salient, completely uncertain. With more knowledge gained by the network, CLA transforms the curiosity degree of each pixel to yield enhanced detail-enriched saliency maps. In order to extract more context-aware information of potential salient objects and make a better foundation for CLA, a high-level feature extraction module (HFEM) is further proposed. Based on the much better high-level features extracted by HFEM, FA can classify the curiosity degree for each pixel more reasonably and accurately. Extensive experiments on five popular datasets clearly demonstrate that our method outperforms the state-of-the-art approaches without any pre-processing operations or post-processing operations 
650 4 |a Journal Article 
700 1 |a Wang, Pengzhi  |e verfasserin  |4 aut 
700 1 |a Han, Yahong  |e verfasserin  |4 aut 
700 1 |a Zhang, Xue  |e verfasserin  |4 aut 
700 1 |a Sun, Meijun  |e verfasserin  |4 aut 
700 1 |a Tian, Qi  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 31(2022) vom: 26., Seite 5989-6001  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:31  |g year:2022  |g day:26  |g pages:5989-6001 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2022.3203605  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 31  |j 2022  |b 26  |h 5989-6001