Evaporative Deposition of Surfactant-Laden Nanofluid Droplets over a Silicon Surface

Morphologies of evaporative deposition, which has been widely applied in potential fields, were induced by the competition between internal flows inside evaporating droplets. Controlling the pattern of deposition and suppressing the coffee-ring effect are essential issues of intense interest in the...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 38(2022), 38 vom: 27. Sept., Seite 11666-11674
1. Verfasser: Yang, Xiao-Ye (VerfasserIn)
Weitere Verfasser: Li, Guo-Hao, Huang, Xianfu, Yu, Ying-Song
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Morphologies of evaporative deposition, which has been widely applied in potential fields, were induced by the competition between internal flows inside evaporating droplets. Controlling the pattern of deposition and suppressing the coffee-ring effect are essential issues of intense interest in the aspects of industrial technologies and scientific applications. Here, evaporative deposition of surfactant-laden nanofluid droplets over silicon was experimentally investigated. A ring-like deposition was formed after complete evaporation of sodium dodecyl sulfate (SDS)-laden nanofluid droplets with an initial SDS concentration ranging from 0 to 1.5 CMC. In the case of initial SDS concentrations above 1.3 CMC, no cracks were observed in the ring-like deposition, indicating that the deposition patterns of nanofluid droplets could be completely changed and cracks could be eliminated by sufficient addition of SDS. With the increase of the initial concentration of hexadecyl trimethylammonium bromide (CTAB), the width of the deposition ring gradually decreased until no ring-like structure was formed. On the contrary, with the increase of the initial Triton X-100 (TX-100) concentration, the width of the deposition ring gradually increased until a uniform deposition was generated. Moreover, when the initial TX-100 concentration was high, a "tree-ring-like" pattern was discovered. Besides, morphologies of evaporative pattern due to the addition of surfacants were qualitatively analyzed
Beschreibung:Date Revised 27.09.2022
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.2c01564