MPS-NeRF : Generalizable 3D Human Rendering From Multiview Images

There has been rapid progress recently on 3D human rendering, including novel view synthesis and pose animation, based on the advances of neural radiance fields (NeRF). However, most existing methods focus on person-specific training and their training typically requires multi-view videos. This pape...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - PP(2022) vom: 12. Sept.
1. Verfasser: Gao, Xiangjun (VerfasserIn)
Weitere Verfasser: Yang, Jiaolong, Kim, Jongyoo, Peng, Sida, Liu, Zicheng, Tong, Xin
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM346119286
003 DE-627
005 20240216232230.0
007 cr uuu---uuuuu
008 231226s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2022.3205910  |2 doi 
028 5 2 |a pubmed24n1295.xml 
035 |a (DE-627)NLM346119286 
035 |a (NLM)36094968 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Gao, Xiangjun  |e verfasserin  |4 aut 
245 1 0 |a MPS-NeRF  |b Generalizable 3D Human Rendering From Multiview Images 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 16.02.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a There has been rapid progress recently on 3D human rendering, including novel view synthesis and pose animation, based on the advances of neural radiance fields (NeRF). However, most existing methods focus on person-specific training and their training typically requires multi-view videos. This paper deals with a new challenging task - rendering novel views and novel poses for a person unseen in training, using only multiview still images as input without videos. For this task, we propose a simple yet surprisingly effective method to train a generalizable NeRF with multiview images as conditional input. The key ingredient is a dedicated representation combining a canonical NeRF and a volume deformation scheme. Using a canonical space enables our method to learn shared properties of human and easily generalize to different people. Volume deformation is used to connect the canonical space with input and target images and query image features for radiance and density prediction. We leverage the parametric 3D human model fitted on the input images to derive the deformation, which works quite well in practice when combined with our canonical NeRF. The experiments on both real and synthetic data with the novel view synthesis and pose animation tasks collectively demonstrate the efficacy of our method 
650 4 |a Journal Article 
700 1 |a Yang, Jiaolong  |e verfasserin  |4 aut 
700 1 |a Kim, Jongyoo  |e verfasserin  |4 aut 
700 1 |a Peng, Sida  |e verfasserin  |4 aut 
700 1 |a Liu, Zicheng  |e verfasserin  |4 aut 
700 1 |a Tong, Xin  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g PP(2022) vom: 12. Sept.  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:PP  |g year:2022  |g day:12  |g month:09 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2022.3205910  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d PP  |j 2022  |b 12  |c 09