|
|
|
|
LEADER |
01000caa a22002652c 4500 |
001 |
NLM346045320 |
003 |
DE-627 |
005 |
20250303194827.0 |
007 |
cr uuu---uuuuu |
008 |
231226s2022 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1016/j.plaphy.2022.08.029
|2 doi
|
028 |
5 |
2 |
|a pubmed25n1153.xml
|
035 |
|
|
|a (DE-627)NLM346045320
|
035 |
|
|
|a (NLM)36087542
|
035 |
|
|
|a (PII)S0981-9428(22)00397-7
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Guan, Yaqin
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Fusarium oxysporum infection on root elicit aboveground terpene production and salicylic acid accumulation in Chrysanthemum morifolium
|
264 |
|
1 |
|c 2022
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 29.09.2022
|
500 |
|
|
|a Date Revised 29.09.2022
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a Copyright © 2022 Elsevier Masson SAS. All rights reserved.
|
520 |
|
|
|a Underground infection of Fusarium oxysporum resulted in great yield losses in chrysanthemum (Chrysanthemum morifolium Ramat.) industry. However, the effect of F. oxysporum root disease on the terpenes production in above- and below-ground parts of plant is completely unexplored. The aim of this study was to investigate the systematic impact of Fusarium infection underground on the terpene production in aboveground parts of chrysanthemum. Terpene production in above- and below-ground parts was profiled in a time series of post-inoculation by GC-MS. Total terpenes were significantly induced from roots and leaves of Fusarium-infected versus healthy plants. These terpenes included monoterpenes, sesquiterpenes and diterpenes, in which sesquiterpenes were primarily induced in roots and leaves, while monoterpenes were produced only in leaves. Through transcriptome analysis, 8 differentially expressed terpene synthase genes (TPSs) were screened out. The relative expression levels of 8 TPS genes at different developmental stage and tissues indicated the spatial delay of the TPS genes in leaves. The induced terpenes from roots and leaves showed consistency with the expression pattern of TPS genes. The biochemical function of Cm-j-TPS1/2/7 were verified by enzymatic assay. Additionally, it's found that the content of salicylic acid (SA) in root and leaf significantly increased by F. oxysporum infection, suggesting a role of the SA signaling pathway in defense. Together, these results reveal the defense response of above- and below-ground parts of plants to root fungal attack and provide a theoretical basis for the effective prediction and control of F. oxysporum infection in chrysanthemum
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Chrysanthemum morifolium Ramat.
|
650 |
|
4 |
|a Fusarium oxysporum
|
650 |
|
4 |
|a Salicylic acid
|
650 |
|
4 |
|a Terpene synthase
|
650 |
|
4 |
|a Terpenes
|
650 |
|
7 |
|a Monoterpenes
|2 NLM
|
650 |
|
7 |
|a Sesquiterpenes
|2 NLM
|
650 |
|
7 |
|a Terpenes
|2 NLM
|
650 |
|
7 |
|a Salicylic Acid
|2 NLM
|
650 |
|
7 |
|a O414PZ4LPZ
|2 NLM
|
700 |
1 |
|
|a He, Xi
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wen, Dian
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Chen, Sumei
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Chen, Fadi
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Chen, Feng
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Jiang, Yifan
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Plant physiology and biochemistry : PPB
|d 1991
|g 190(2022) vom: 01. Nov., Seite 11-23
|w (DE-627)NLM098178261
|x 1873-2690
|7 nnas
|
773 |
1 |
8 |
|g volume:190
|g year:2022
|g day:01
|g month:11
|g pages:11-23
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1016/j.plaphy.2022.08.029
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 190
|j 2022
|b 01
|c 11
|h 11-23
|