Video Question Answering With Prior Knowledge and Object-Sensitive Learning

Video Question Answering (VideoQA), which explores spatial-temporal visual information of videos given a linguistic query, has received unprecedented attention over recent years. One of the main challenges lies in locating relevant visual and linguistic information, and therefore various attention-b...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 31(2022) vom: 09., Seite 5936-5948
Auteur principal: Zeng, Pengpeng (Auteur)
Autres auteurs: Zhang, Haonan, Gao, Lianli, Song, Jingkuan, Shen, Heng Tao
Format: Article en ligne
Langue:English
Publié: 2022
Accès à la collection:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Sujets:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM346009804
003 DE-627
005 20250303194333.0
007 cr uuu---uuuuu
008 231226s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2022.3205212  |2 doi 
028 5 2 |a pubmed25n1153.xml 
035 |a (DE-627)NLM346009804 
035 |a (NLM)36083958 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zeng, Pengpeng  |e verfasserin  |4 aut 
245 1 0 |a Video Question Answering With Prior Knowledge and Object-Sensitive Learning 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 19.09.2022 
500 |a Date Revised 19.09.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Video Question Answering (VideoQA), which explores spatial-temporal visual information of videos given a linguistic query, has received unprecedented attention over recent years. One of the main challenges lies in locating relevant visual and linguistic information, and therefore various attention-based approaches are proposed. Despite the impressive progress, two aspects are not fully explored by current methods to get proper attention. Firstly, prior knowledge, which in the human cognitive process plays an important role in assisting the reasoning process of VideoQA, is not fully utilized. Secondly, structured visual information (e.g., object) instead of the raw video is underestimated. To address the above two issues, we propose a Prior Knowledge and Object-sensitive Learning (PKOL) by exploring the effect of prior knowledge and learning object-sensitive representations to boost the VideoQA task. Specifically, we first propose a Prior Knowledge Exploring (PKE) module that aims to acquire and integrate prior knowledge into a question feature for feature enriching, where an information retriever is constructed to retrieve related sentences as prior knowledge from the massive corpus. In addition, we propose an Object-sensitive Representation Learning (ORL) module to generate object-sensitive features by interacting object-level features with frame and clip-level features. Our proposed PKOL achieves consistent improvements on three competitive benchmarks (i.e., MSVD-QA, MSRVTT-QA, and TGIF-QA) and gains state-of-the-art performance. The source code is available at https://github.com/zchoi/PKOL 
650 4 |a Journal Article 
700 1 |a Zhang, Haonan  |e verfasserin  |4 aut 
700 1 |a Gao, Lianli  |e verfasserin  |4 aut 
700 1 |a Song, Jingkuan  |e verfasserin  |4 aut 
700 1 |a Shen, Heng Tao  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 31(2022) vom: 09., Seite 5936-5948  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnas 
773 1 8 |g volume:31  |g year:2022  |g day:09  |g pages:5936-5948 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2022.3205212  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 31  |j 2022  |b 09  |h 5936-5948