Physiological and biochemical bases of spermidine-induced alleviation of cadmium and lead combined stress in rice

Copyright © 2022 Elsevier Masson SAS. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Plant physiology and biochemistry : PPB. - 1991. - 189(2022) vom: 15. Okt., Seite 104-114
1. Verfasser: Gu, Jinyu (VerfasserIn)
Weitere Verfasser: Hu, Chunmei, Jia, Xiangwei, Ren, Yanfang, Su, Dongming, He, Junyu
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Plant physiology and biochemistry : PPB
Schlagworte:Journal Article Cd+Pb combined stress Heat map clustering Physio-biochemical parameters Principal component analysis Rice Spermidine Anthocyanins Antioxidants Oxidants mehr... Phenols Sugars Cadmium 00BH33GNGH Superoxides 11062-77-4 Chlorophyll 1406-65-1 Lead 2P299V784P Carotenoids 36-88-4 Malondialdehyde 4Y8F71G49Q Proline 9DLQ4CIU6V Hydrogen Peroxide BBX060AN9V U87FK77H25
LEADER 01000naa a22002652 4500
001 NLM345983092
003 DE-627
005 20231226030341.0
007 cr uuu---uuuuu
008 231226s2022 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.plaphy.2022.08.010  |2 doi 
028 5 2 |a pubmed24n1153.xml 
035 |a (DE-627)NLM345983092 
035 |a (NLM)36081232 
035 |a (PII)S0981-9428(22)00372-2 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Gu, Jinyu  |e verfasserin  |4 aut 
245 1 0 |a Physiological and biochemical bases of spermidine-induced alleviation of cadmium and lead combined stress in rice 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 19.09.2022 
500 |a Date Revised 19.09.2022 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Copyright © 2022 Elsevier Masson SAS. All rights reserved. 
520 |a Cadmium (Cd) and lead (Pb) pollution is a major environmental issue affecting plant production. Spermidine (Spd) is involved in plant response to abiotic stress. However, the role and associated mechanism of Spd under Cd + Pb combined stress are poorly understood. The potential protective role of Spd at different concentration on rice (Oryza sativa L.) seedlings exposed to Cd + Pb treatment was investigated by a hydroponic experiment in this study. The results showed that exogenous Spd enhanced the tolerance of rice seedlings to Cd + Pb stress, resulted in an increase in plant height, root length, fresh weight and dry weight of roots and shoots. Further, application of Spd decreased the contents of hydrogen peroxide, superoxide anion, malondialdehyde, and the accumulation of Cd and Pb, and increased the contents of mineral nutrient, carotenoids, chlorophyll, proline, soluble sugar, soluble protein, total phenol, flavonoid, anthocyanin, and antioxidant enzymes activities in roots and shoots of rice seedlings under Cd + Pb stress. Particularly, 0.5 mmol L-1 Spd was the most effective to alleviate the adverse impacts on growth and physiological metabolism of rice seedlings under Cd + Pb stress. Principal component analysis and heat map clustering established correlations between physio-biochemical parameters and further revealed Spd alleviated Cd + Pb damage in rice seedling was associated with inhibition of accumulation and translocation of Cd and Pb, increasing the contents of photosynthetic pigments and mineral nutrient and stimulation of antioxidative response and osmotic adjustment. Overall, our findings provide an important prospect for use of Spd in modulating Cd + Pb tolerance in rice plants. Spd could help to alleviate Cd + Pb damage through inhibition of accumulation and translocation of Cd and Pb and stimulation of oxidant-defense system and osmotic adjustment 
650 4 |a Journal Article 
650 4 |a Cd+Pb combined stress 
650 4 |a Heat map clustering 
650 4 |a Physio-biochemical parameters 
650 4 |a Principal component analysis 
650 4 |a Rice 
650 4 |a Spermidine 
650 7 |a Anthocyanins  |2 NLM 
650 7 |a Antioxidants  |2 NLM 
650 7 |a Oxidants  |2 NLM 
650 7 |a Phenols  |2 NLM 
650 7 |a Sugars  |2 NLM 
650 7 |a Cadmium  |2 NLM 
650 7 |a 00BH33GNGH  |2 NLM 
650 7 |a Superoxides  |2 NLM 
650 7 |a 11062-77-4  |2 NLM 
650 7 |a Chlorophyll  |2 NLM 
650 7 |a 1406-65-1  |2 NLM 
650 7 |a Lead  |2 NLM 
650 7 |a 2P299V784P  |2 NLM 
650 7 |a Carotenoids  |2 NLM 
650 7 |a 36-88-4  |2 NLM 
650 7 |a Malondialdehyde  |2 NLM 
650 7 |a 4Y8F71G49Q  |2 NLM 
650 7 |a Proline  |2 NLM 
650 7 |a 9DLQ4CIU6V  |2 NLM 
650 7 |a Hydrogen Peroxide  |2 NLM 
650 7 |a BBX060AN9V  |2 NLM 
650 7 |a Spermidine  |2 NLM 
650 7 |a U87FK77H25  |2 NLM 
700 1 |a Hu, Chunmei  |e verfasserin  |4 aut 
700 1 |a Jia, Xiangwei  |e verfasserin  |4 aut 
700 1 |a Ren, Yanfang  |e verfasserin  |4 aut 
700 1 |a Su, Dongming  |e verfasserin  |4 aut 
700 1 |a He, Junyu  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Plant physiology and biochemistry : PPB  |d 1991  |g 189(2022) vom: 15. Okt., Seite 104-114  |w (DE-627)NLM098178261  |x 1873-2690  |7 nnns 
773 1 8 |g volume:189  |g year:2022  |g day:15  |g month:10  |g pages:104-114 
856 4 0 |u http://dx.doi.org/10.1016/j.plaphy.2022.08.010  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 189  |j 2022  |b 15  |c 10  |h 104-114