Hydro/Organo/Ionogels : "Controllable" Electromagnetic Wave Absorbers
© 2022 Wiley-VCH GmbH.
Veröffentlicht in: | Advanced materials (Deerfield Beach, Fla.). - 1998. - 34(2022), 43 vom: 08. Okt., Seite e2205376 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2022
|
Zugriff auf das übergeordnete Werk: | Advanced materials (Deerfield Beach, Fla.) |
Schlagworte: | Journal Article hydrogels ionic conduction loss ionogels organogels polarization loss |
Zusammenfassung: | © 2022 Wiley-VCH GmbH. Demand for electromagnetic wave (EMW) absorbers continues to increase with technological advances in wearable electronics and military applications. In this study, a new strategy to overcome the drawbacks of current absorbers by employing the co-contribution of functional polymer frameworks and liquids with strong EMW absorption properties is proposed. Strongly polar water, dimethyl sulfoxide/water mixtures, and highly conductive 1-ethyl-3-methylimidazolium ethyl sulfate ([EMI][ES]) are immobilized in dielectrically inert polymer networks to form different classes of gels (hydrogels, organogels, and ionogels). These gels demonstrate a high correlation between their dielectric properties and polarity/ionic conductivity/non-covalent interaction of immobilized liquids. Thus, the EMW absorption performances of the gels can be precisely tuned over a wide range due to the diversity and stability of the liquids. The prepared hydrogels show good shielding performance (shielding efficiency > 20 dB) due to the high dielectric constants, while organogels with moderate attenuation ability and impedance matching achieve full-wave absorption in X-band (8.2-12.4 GHz) at 2.5 ± 0.5 mm. The ionogels also offer a wide effective absorption bandwidth (10.79-16.38 GHz at 2.2 mm) via prominent ionic conduction loss. In short, this work provides a conceptually novel platform to develop high-efficient, customizable, and low-cost functional absorbers |
---|---|
Beschreibung: | Date Revised 26.10.2022 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1521-4095 |
DOI: | 10.1002/adma.202205376 |