Untrained Neural Network Priors for Inverse Imaging Problems : A Survey

In recent years, advancements in machine learning (ML) techniques, in particular, deep learning (DL) methods have gained a lot of momentum in solving inverse imaging problems, often surpassing the performance provided by hand-crafted approaches. Traditionally, analytical methods have been used to so...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 5 vom: 19. Mai, Seite 6511-6536
1. Verfasser: Qayyum, Adnan (VerfasserIn)
Weitere Verfasser: Ilahi, Inaam, Shamshad, Fahad, Boussaid, Farid, Bennamoun, Mohammed, Qadir, Junaid
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM345806905
003 DE-627
005 20231226025919.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2022.3204527  |2 doi 
028 5 2 |a pubmed24n1152.xml 
035 |a (DE-627)NLM345806905 
035 |a (NLM)36063506 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Qayyum, Adnan  |e verfasserin  |4 aut 
245 1 0 |a Untrained Neural Network Priors for Inverse Imaging Problems  |b A Survey 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 10.04.2023 
500 |a Date Revised 10.04.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In recent years, advancements in machine learning (ML) techniques, in particular, deep learning (DL) methods have gained a lot of momentum in solving inverse imaging problems, often surpassing the performance provided by hand-crafted approaches. Traditionally, analytical methods have been used to solve inverse imaging problems such as image restoration, inpainting, and superresolution. Unlike analytical methods for which the problem is explicitly defined and the domain knowledge is carefully engineered into the solution, DL models do not benefit from such prior knowledge and instead make use of large datasets to predict an unknown solution to the inverse problem. Recently, a new paradigm of training deep models using a single image, named untrained neural network prior (UNNP) has been proposed to solve a variety of inverse tasks, e.g., restoration and inpainting. Since then, many researchers have proposed various applications and variants of UNNP. In this paper, we present a comprehensive review of such studies and various UNNP applications for different tasks and highlight various open research problems which require further research 
650 4 |a Journal Article 
700 1 |a Ilahi, Inaam  |e verfasserin  |4 aut 
700 1 |a Shamshad, Fahad  |e verfasserin  |4 aut 
700 1 |a Boussaid, Farid  |e verfasserin  |4 aut 
700 1 |a Bennamoun, Mohammed  |e verfasserin  |4 aut 
700 1 |a Qadir, Junaid  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 45(2023), 5 vom: 19. Mai, Seite 6511-6536  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:45  |g year:2023  |g number:5  |g day:19  |g month:05  |g pages:6511-6536 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2022.3204527  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 45  |j 2023  |e 5  |b 19  |c 05  |h 6511-6536