ChestX-Ray6 : Prediction of multiple diseases including COVID-19 from chest X-ray images using convolutional neural network

© 2022 Elsevier Ltd. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Expert systems with applications. - 1999. - 211(2023) vom: 01. Jan., Seite 118576
1. Verfasser: Nahiduzzaman, Md (VerfasserIn)
Weitere Verfasser: Islam, Md Rabiul, Hassan, Rakibul
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Expert systems with applications
Schlagworte:Journal Article COVID19 Cardiomegaly ChestX-Ray6 Convolutional neural network (CNN) DenseNet121 Lung opacity MobileNetV2 Pleural Pneumonia mehr... ResNet50 VGG19
LEADER 01000caa a22002652 4500
001 NLM34579480X
003 DE-627
005 20240909232248.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.eswa.2022.118576  |2 doi 
028 5 2 |a pubmed24n1528.xml 
035 |a (DE-627)NLM34579480X 
035 |a (NLM)36062267 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Nahiduzzaman, Md  |e verfasserin  |4 aut 
245 1 0 |a ChestX-Ray6  |b Prediction of multiple diseases including COVID-19 from chest X-ray images using convolutional neural network 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 09.09.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2022 Elsevier Ltd. All rights reserved. 
520 |a In the last few decades, several epidemic diseases have been introduced. In some cases, doctors and medical physicians are facing difficulties in identifying these diseases correctly. A machine can perform some of these identification tasks more accurately than a human if it is trained correctly. With time, the number of medical data is increasing. A machine can analyze this medical data and extract knowledge from this data, which can help doctors and medical physicians. This study proposed a lightweight convolutional neural network (CNN) named ChestX-ray6 that automatically detects pneumonia, COVID19, cardiomegaly, lung opacity, and pleural from digital chest x-ray images. Here multiple databases have been combined, containing 9,514 chest x-ray images of normal and other five diseases. The lightweight ChestX-ray6 model achieved an accuracy of 80% for the detection of six diseases. The ChestX-ray6 model has been saved and used for binary classification of normal and pneumonia patients to reveal the model's generalization power. The pre-trained ChestX-ray6 model has achieved an accuracy and recall of 97.94% and 98% for binary classification, which outweighs the state-of-the-art (SOTA) models 
650 4 |a Journal Article 
650 4 |a COVID19 
650 4 |a Cardiomegaly 
650 4 |a ChestX-Ray6 
650 4 |a Convolutional neural network (CNN) 
650 4 |a DenseNet121 
650 4 |a Lung opacity 
650 4 |a MobileNetV2 
650 4 |a Pleural 
650 4 |a Pneumonia 
650 4 |a ResNet50 
650 4 |a VGG19 
700 1 |a Islam, Md Rabiul  |e verfasserin  |4 aut 
700 1 |a Hassan, Rakibul  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Expert systems with applications  |d 1999  |g 211(2023) vom: 01. Jan., Seite 118576  |w (DE-627)NLM098196782  |x 0957-4174  |7 nnns 
773 1 8 |g volume:211  |g year:2023  |g day:01  |g month:01  |g pages:118576 
856 4 0 |u http://dx.doi.org/10.1016/j.eswa.2022.118576  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 211  |j 2023  |b 01  |c 01  |h 118576