Investigation of glucose electrooxidation mechanism over N-modified metal-doped graphene electrode by density functional theory approach

© 2022 The Authors. Journal of Computational Chemistry published by Wiley Periodicals LLC.

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 43(2022), 26 vom: 05. Okt., Seite 1793-1801
1. Verfasser: Düzenli, Derya (VerfasserIn)
Weitere Verfasser: Onal, Isik, Tezsevin, Ilker
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Journal Article DFT electrooxidation glucose single atom catalyst Graphite 7782-42-5 Glucose IY9XDZ35W2
LEADER 01000caa a22002652 4500
001 NLM345717880
003 DE-627
005 20240905232007.0
007 cr uuu---uuuuu
008 231226s2022 xx |||||o 00| ||eng c
024 7 |a 10.1002/jcc.26981  |2 doi 
028 5 2 |a pubmed24n1524.xml 
035 |a (DE-627)NLM345717880 
035 |a (NLM)36054551 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Düzenli, Derya  |e verfasserin  |4 aut 
245 1 0 |a Investigation of glucose electrooxidation mechanism over N-modified metal-doped graphene electrode by density functional theory approach 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 13.09.2022 
500 |a Date Revised 05.09.2024 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2022 The Authors. Journal of Computational Chemistry published by Wiley Periodicals LLC. 
520 |a In this work, various precious and non-precious metals reported in the literature as the most effective catalysts for glucose electrooxidation reaction were investigated by the density functional theory (DFT) approach in order to reveal the mechanisms taking place over the catalysts in the fuel cell. The use of a single-atom catalyst model was adopted by insertion of one Au, Cu, Ni, Pd, Pt, and Zn metal atom on the pyridinic N atoms doped graphene surface (NG). β form of d-glucose in alkaline solution was used to determine the reaction mechanism and intermediates that formed during the reaction. DFT results showed that the desired glucono-lactone was formed on the Cu-3NG electrode in a single-step reaction pathway whereas it was produced via different two-step pathways on the Au and Pt-3NG electrodes. Although the interaction of glucose with Ni, Pd, and Zn-doped surfaces resulted in the deprotonation of the molecule, lactone product formation did not occur on these electrode surfaces. When the calculation results are evaluated in terms of energy content and product formation, it can be concluded that Cu, Pt, and especially Au doped graphene catalysts are effective for direct glucose oxidation in fuel cells reactor 
650 4 |a Journal Article 
650 4 |a DFT 
650 4 |a electrooxidation 
650 4 |a glucose 
650 4 |a single atom catalyst 
650 7 |a Graphite  |2 NLM 
650 7 |a 7782-42-5  |2 NLM 
650 7 |a Glucose  |2 NLM 
650 7 |a IY9XDZ35W2  |2 NLM 
700 1 |a Onal, Isik  |e verfasserin  |4 aut 
700 1 |a Tezsevin, Ilker  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational chemistry  |d 1984  |g 43(2022), 26 vom: 05. Okt., Seite 1793-1801  |w (DE-627)NLM098138448  |x 1096-987X  |7 nnns 
773 1 8 |g volume:43  |g year:2022  |g number:26  |g day:05  |g month:10  |g pages:1793-1801 
856 4 0 |u http://dx.doi.org/10.1002/jcc.26981  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 43  |j 2022  |e 26  |b 05  |c 10  |h 1793-1801