Reconstruct Dynamic Soft-Tissue With Stereo Endoscope Based on a Single-Layer Network

In dynamic minimally invasive surgery environments, 3D reconstruction of deformable soft-tissue surfaces with stereo endoscopic images is very challenging. A simple self-supervised stereo reconstruction framework is proposed to address this issue, which bridges the traditional geometric deformable m...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 31(2022) vom: 02., Seite 5828-5840
1. Verfasser: Yang, Bo (VerfasserIn)
Weitere Verfasser: Xu, Siyuan, Chen, Hongrong, Zheng, Wenfeng, Liu, Chao
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM345716353
003 DE-627
005 20231226025714.0
007 cr uuu---uuuuu
008 231226s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2022.3202367  |2 doi 
028 5 2 |a pubmed24n1152.xml 
035 |a (DE-627)NLM345716353 
035 |a (NLM)36054398 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Yang, Bo  |e verfasserin  |4 aut 
245 1 0 |a Reconstruct Dynamic Soft-Tissue With Stereo Endoscope Based on a Single-Layer Network 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 12.09.2022 
500 |a Date Revised 12.09.2022 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a In dynamic minimally invasive surgery environments, 3D reconstruction of deformable soft-tissue surfaces with stereo endoscopic images is very challenging. A simple self-supervised stereo reconstruction framework is proposed to address this issue, which bridges the traditional geometric deformable models and the newly revived neural networks. The equivalence between the classical thin plate spline (TPS) model and a single-layer fully-connected or convolutional network is studied. By alternating training of two TPS equivalent networks within the self-supervised framework, disparity priors are learnt from the past stereo frames of target tissues to form an optimized disparity basis, on which disparity maps of subsequent frames can be estimated more accurately without sacrificing computational efficiency and robustness. The proposed method was verified on stereo-endoscopic videos recorded by the da Vinci® surgical robots 
650 4 |a Journal Article 
700 1 |a Xu, Siyuan  |e verfasserin  |4 aut 
700 1 |a Chen, Hongrong  |e verfasserin  |4 aut 
700 1 |a Zheng, Wenfeng  |e verfasserin  |4 aut 
700 1 |a Liu, Chao  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 31(2022) vom: 02., Seite 5828-5840  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:31  |g year:2022  |g day:02  |g pages:5828-5840 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2022.3202367  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 31  |j 2022  |b 02  |h 5828-5840