Physics to the Rescue : Deep Non-Line-of-Sight Reconstruction for High-Speed Imaging

Computational approach to imaging around the corner, or non-line-of-sight (NLOS) imaging, is becoming a reality thanks to major advances in imaging hardware and reconstruction algorithms. A recent development towards practical NLOS imaging, Nam et al. [1] demonstrated a high-speed non-confocal imagi...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - PP(2022) vom: 01. Sept.
1. Verfasser: Mu, Fangzhou (VerfasserIn)
Weitere Verfasser: Mo, Sicheng, Peng, Jiayong, Liu, Xiaochun, Nam, Ji Hyun, Raghavan, Siddeshwar, Velten, Andreas, Li, Yin
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM345662989
003 DE-627
005 20250303185413.0
007 cr uuu---uuuuu
008 231226s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2022.3203383  |2 doi 
028 5 2 |a pubmed25n1151.xml 
035 |a (DE-627)NLM345662989 
035 |a (NLM)36049012 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Mu, Fangzhou  |e verfasserin  |4 aut 
245 1 0 |a Physics to the Rescue  |b Deep Non-Line-of-Sight Reconstruction for High-Speed Imaging 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 16.02.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Computational approach to imaging around the corner, or non-line-of-sight (NLOS) imaging, is becoming a reality thanks to major advances in imaging hardware and reconstruction algorithms. A recent development towards practical NLOS imaging, Nam et al. [1] demonstrated a high-speed non-confocal imaging system that operates at 5 Hz, 100x faster than the prior art. This enormous gain in acquisition rate, however, necessitates numerous approximations in light transport, breaking many existing NLOS reconstruction methods that assume an idealized image formation model. To bridge the gap, we present a novel deep model that incorporates the complementary physics priors of wave propagation and volume rendering into a neural network for high-quality and robust NLOS reconstruction. This orchestrated design regularizes the solution space by relaxing the image formation model, resulting in a deep model that generalizes well on real captures despite being exclusively trained on synthetic data. Further, we devise a unified learning framework that enables our model to be flexibly trained using diverse supervision signals, including target intensity images or even raw NLOS transient measurements. Once trained, our model renders both intensity and depth images at inference time in a single forward pass, capable of processing more than 5 captures per second on a high-end GPU. Through extensive qualitative and quantitative experiments, we show that our method outperforms prior physics and learning based approaches on both synthetic and real measurements. We anticipate that our method along with the fast capturing system will accelerate future development of NLOS imaging for real world applications that require high-speed imaging 
650 4 |a Journal Article 
700 1 |a Mo, Sicheng  |e verfasserin  |4 aut 
700 1 |a Peng, Jiayong  |e verfasserin  |4 aut 
700 1 |a Liu, Xiaochun  |e verfasserin  |4 aut 
700 1 |a Nam, Ji Hyun  |e verfasserin  |4 aut 
700 1 |a Raghavan, Siddeshwar  |e verfasserin  |4 aut 
700 1 |a Velten, Andreas  |e verfasserin  |4 aut 
700 1 |a Li, Yin  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g PP(2022) vom: 01. Sept.  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnas 
773 1 8 |g volume:PP  |g year:2022  |g day:01  |g month:09 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2022.3203383  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d PP  |j 2022  |b 01  |c 09