Deep Unrolled Low-Rank Tensor Completion for High Dynamic Range Imaging

The major challenge in high dynamic range (HDR) imaging for dynamic scenes is suppressing ghosting artifacts caused by large object motions or poor exposures. Whereas recent deep learning-based approaches have shown significant synthesis performance, interpretation and analysis of their behaviors ar...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 31(2022) vom: 01., Seite 5774-5787
1. Verfasser: Mai, Truong Thanh Nhat (VerfasserIn)
Weitere Verfasser: Lam, Edmund Y, Lee, Chul
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM34566261X
003 DE-627
005 20231226025602.0
007 cr uuu---uuuuu
008 231226s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2022.3201708  |2 doi 
028 5 2 |a pubmed24n1152.xml 
035 |a (DE-627)NLM34566261X 
035 |a (NLM)36048976 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Mai, Truong Thanh Nhat  |e verfasserin  |4 aut 
245 1 0 |a Deep Unrolled Low-Rank Tensor Completion for High Dynamic Range Imaging 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 12.09.2022 
500 |a Date Revised 12.09.2022 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a The major challenge in high dynamic range (HDR) imaging for dynamic scenes is suppressing ghosting artifacts caused by large object motions or poor exposures. Whereas recent deep learning-based approaches have shown significant synthesis performance, interpretation and analysis of their behaviors are difficult and their performance is affected by the diversity of training data. In contrast, traditional model-based approaches yield inferior synthesis performance to learning-based algorithms despite their theoretical thoroughness. In this paper, we propose an algorithm unrolling approach to ghost-free HDR image synthesis algorithm that unrolls an iterative low-rank tensor completion algorithm into deep neural networks to take advantage of the merits of both learning- and model-based approaches while overcoming their weaknesses. First, we formulate ghost-free HDR image synthesis as a low-rank tensor completion problem by assuming the low-rank structure of the tensor constructed from low dynamic range (LDR) images and linear dependency among LDR images. We also define two regularization functions to compensate for modeling inaccuracy by extracting hidden model information. Then, we solve the problem efficiently using an iterative optimization algorithm by reformulating it into a series of subproblems. Finally, we unroll the iterative algorithm into a series of blocks corresponding to each iteration, in which the optimization variables are updated by rigorous closed-form solutions and the regularizers are updated by learned deep neural networks. Experimental results on different datasets show that the proposed algorithm provides better HDR image synthesis performance with superior robustness compared with state-of-the-art algorithms, while using significantly fewer training samples 
650 4 |a Journal Article 
700 1 |a Lam, Edmund Y  |e verfasserin  |4 aut 
700 1 |a Lee, Chul  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 31(2022) vom: 01., Seite 5774-5787  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:31  |g year:2022  |g day:01  |g pages:5774-5787 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2022.3201708  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 31  |j 2022  |b 01  |h 5774-5787