Evidence-based guidelines for automated conservation assessments of plant species

© 2022 Royal Botanic Gardens, Kew. Conservation Biology published by Wiley Periodicals LLC on behalf of Society for Conservation Biology.

Bibliographische Detailangaben
Veröffentlicht in:Conservation biology : the journal of the Society for Conservation Biology. - 1999. - 37(2023), 1 vom: 01. Feb., Seite e13992
1. Verfasser: Walker, Barnaby E (VerfasserIn)
Weitere Verfasser: Leão, Tarciso C C, Bachman, Steven P, Lucas, Eve, Nic Lughadha, Eimear
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Conservation biology : the journal of the Society for Conservation Biology
Schlagworte:Journal Article Research Support, Non-U.S. Gov't IUCN Red List Lista Roja UICN aprendizaje automático automation automatización biodiversity conservation conservación de la biodiversidad machine learning
LEADER 01000naa a22002652 4500
001 NLM345650077
003 DE-627
005 20231226025544.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1111/cobi.13992  |2 doi 
028 5 2 |a pubmed24n1152.xml 
035 |a (DE-627)NLM345650077 
035 |a (NLM)36047690 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Walker, Barnaby E  |e verfasserin  |4 aut 
245 1 0 |a Evidence-based guidelines for automated conservation assessments of plant species 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 01.02.2023 
500 |a Date Revised 15.04.2023 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2022 Royal Botanic Gardens, Kew. Conservation Biology published by Wiley Periodicals LLC on behalf of Society for Conservation Biology. 
520 |a Assessing species' extinction risk is vital to setting conservation priorities. However, assessment endeavors, such as those used to produce the IUCN Red List of Threatened Species, have significant gaps in taxonomic coverage. Automated assessment (AA) methods are gaining popularity to fill these gaps. Choices made in developing, using, and reporting results of AA methods could hinder their successful adoption or lead to poor allocation of conservation resources. We explored how choice of data cleaning type and level, taxonomic group, training sample, and automation method affect performance of threat status predictions for plant species. We used occurrences from the Global Biodiversity Information Facility (GBIF) to generate assessments for species in 3 taxonomic groups based on 6 different occurrence-based AA methods. We measured each method's performance and coverage following increasingly stringent occurrence cleaning. Automatically cleaned data from GBIF performed comparably to occurrence records cleaned manually by experts. However, all types of data cleaning limited the coverage of AAs. Overall, machine-learning-based methods performed well across taxa, even with minimal data cleaning. Results suggest a machine-learning-based method applied to minimally cleaned data offers the best compromise between performance and species coverage. However, optimal data cleaning, training sample, and automation methods depend on the study group, intended applications, and expertise 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a IUCN Red List 
650 4 |a Lista Roja UICN 
650 4 |a aprendizaje automático 
650 4 |a automation 
650 4 |a automatización 
650 4 |a biodiversity conservation 
650 4 |a conservación de la biodiversidad 
650 4 |a machine learning 
700 1 |a Leão, Tarciso C C  |e verfasserin  |4 aut 
700 1 |a Bachman, Steven P  |e verfasserin  |4 aut 
700 1 |a Lucas, Eve  |e verfasserin  |4 aut 
700 1 |a Nic Lughadha, Eimear  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Conservation biology : the journal of the Society for Conservation Biology  |d 1999  |g 37(2023), 1 vom: 01. Feb., Seite e13992  |w (DE-627)NLM098176803  |x 1523-1739  |7 nnns 
773 1 8 |g volume:37  |g year:2023  |g number:1  |g day:01  |g month:02  |g pages:e13992 
856 4 0 |u http://dx.doi.org/10.1111/cobi.13992  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 37  |j 2023  |e 1  |b 01  |c 02  |h e13992